Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Система скалярного керування частотно-регульованогоСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Асинхронного електропривода
Принцип скалярного керування асинхронних двигунів ґрунтуєть-ся на зміні частоти і біжучих значень модулів напруги, магнітного потоку і струмів. При цьому керування швидкістю двигуна може забезпечуватись одночасним регулюванням частоти і напруги , або частоти і струму статора . Перший спосіб керування називається частотним керуванням, другий – частотно - струмо - вим. Частотне керування широко використовується в даний час, бо для нього є характерним простота вимірювання змінних і можли-вість створення простих розімкнених систем керування. Недолік – трудності регулювання швидкості і моменту в динамічних режимах, що зв’язано зі швидкоплинністю і складністю електромагнітних процесів, що протікають у двигуні. Частотно-стримове керування характеризується малим критич-ним ковзанням і сталими критичним моментом та сталим струмом статора при зміні його частоти. В розімкнених системах керування такий спосіб керування не використовується, оскільки при збільше-нні навантаження різко зменшується магнітний потік і для забезпе-чення необхідної перевантажувальної спроможності за моментом потрібно збільшувати напругу і струм понад номінальні значення, що робити недоцільно. Розімкнені системи керування. При невисокій точності і діапа-зоні регулювання до 10 за умови сталого навантаження і діапазоні до 25 при вентиляторному навантаженні вико-ристовуються розімкнені системи. В таких системах частота і напруга живлення формуються прямопропорційно напрузі керуван-ня в перетворювачі частоти (ПЧ) на базі автономного інверто-ра напруги (рис.11.5). Для компенсації спаду напруги на внутрішніх опорах ПЧ і можливого підвищення напруги в мережі живлення використовуються внутрішні контури стабілізації вихідної напруги. Крім того, для забезпечення сталої перевантажувальної здатності двигуна передбачена компенсація спаду на-пруги на активному опорі обмотки статора за рахунок функціональ-ного перетворювача ФП з нелінійною характеристикою (рис.11.5).
Для більшості серійних перетворювачів нелінійна залежність між заданою напругою і напругою на виході ФП встанов-люється вибором двох базових точок: при і при . Першу точку вибирають з умови обмеження струму статора у стопорному режимі на рівні , що відповідає напрузі на виході перетворювача , де – активний опір обмотки статора.
Рис.11.5. Функціональна схема розімкненої системи ПЧ-АД
Друга точка вибирається з умови мінімального значення частоти, при якій іще справедливе співвідношення . При діапазоні регулювання швидкості 8...10 ця частота складає . При вентиляторному навантаженні для забезпечення закону ке-рування характеристика ФП має мати вид параболи (пунктирна лінія на рис.11.5). Для обмеження струму і моменту при пуску двигуна використо-вується задавач інтенсивності, що забезпечує зміну задаючої напру-ги за лінійним законом. Розімкнена система частотного керування проста за будовою, але не обмежує момент, струм і вихідну напругу при перевантажен-ні і зниженні напруги в мережі живлення, що є її недоліком. Замкнені системи частотного керування. Формування необ-хідних за технологічними умовами статичних і динамічних характе-ристик асинхронного частотно-регульованого електропривода мож-ливо лише в замкнених системах регулювання його координат. Уза-гальнена функціональна схема такої системи (рис.11.6) складається з АД, керованого перетворювача частоти ПЧ, регуляторів Р і дава-чів змінних електропривода Д (, , та інших).
Рис.11.6. Функціональна схема замкненої системи ПЧ-АД зі скалярним керуванням
Керуючими впливами на вході регулятора можуть бути сиг-налами задання любих координат електропривода – швидкості, кута повороту ротора, струму статора, магнітного потоку тощо. Збурю-ючими впливами можуть бути момент сил опору чи коливання напруги мережі . Вхідними сигналами давачів можуть бути змі-нні двигуна, які доступні безпосередньому вимірюванню (частота, напруга і струм статора, магнітний потік), так і визначені розрахун-ковим шляхом (ЕРС, потокозчеплення статора і ротора тощо). Вихідні сигнали регуляторів, які залежать від керуючих впливів , сигналів зворотних зв’язків і прийнятих алгоритмів керування, є сигналами керування частотою , вихідною напругою і стру-мом перетворювача частоти. Із багатьох систем автоматичного регулювання швидкості най-більш простою є система з додатним зв’язком за струмом, але діапа-зон регулювання її обмежений і не перевищує 10. Для збільшення діапазону регулювання вказану систему доповнюють зворотним зв’язком за швидкістю. Тоді при збільшенні навантаження збіль-шується сигнал розузгодження, що призводять до збільшення час-тоти та напруги і за умови застосування ПІ-регулятора швидкості механічна характеристика стає абсолютно жорстокою (лінія 1 на рис.11.7,а). При цьому напруга і частота пропорційно зростають, як показано на рис.11.7,б.
При досягненні максимального моменту обмежується нап-руга на виході регулятора швидкості і вступає в дію відсічка за струмом, що призводить до зниження напруги і частоти відповідно до значень (лінія 2 на рис.11.7,а).
Рис.11.7. Механічні характеристики (а) і залежності вихідних напруги і частоти частотного перетворювача
Системи частотного регулювання є нелінійними. При роботі АД на ділянці характеристики з ковзанням нелінійну систему можна лінеаризувати і вона матиме вид, представлений на рис.11.8. На схемі прийняті такі позначення:
Рис.11.8. Структурна схема системи ПЧ-АД зі зворотним зв’язком за швидкістю
– модуль жорсткості лінеарезованої меха-нічної характеристики; – електромеханічна стала часу; – еквівалентна електромагнітна стала часу кіл ста-тора і ротора; в зоні частот ; – стала часу кола керування ПЧ, яка при високих частотах модуляції вихідної напруги промислових ПЧ (2...50kГц) не перевищує 0,001с. Коефіцієнт зворотного зв’язку за швидкістю . При номінальному задаючому сигналі керування . Передавальна функція асинхронного двигуна
. (11.8)
За умови (11.8) можна представити у виді:
, (11.9)
де і . Якщо вважати і малими некомпенсованими сталими часу, то технічно-оптимальний перехідний процес в системі буде за таких параметрів регулятора швидкості: і . Система частотно-струмового керування. При частотно-стру-мовому керуванні АД живиться від перетворювача частоти, який працює в режимі джерела струму (ПЧС). До складу ПЧС входять керований випрямляч КВ з контуром стабілізації струму (джерело струму) і автономний інвертор струму. Така система є розімкненою і має невеликий діапазон регулювання. Тому її доповнюють зворот-ним зв’язком за швидкістю. Тоді така система забезпечує незалеж-ність електромагнітного моменту АД від частоти і при заданому струмі статора та абсолютному ковзанні, рівному критичному, має більший момент, ніж при живленні АД від джерела напруги.
Рис.11.9. Структурна схема системи ПЧ-АД з частотно-струмовим керуванням
На структурній схемі: – коефіцієнт передачі частотного пе-ретворювача; – коефіцієнт жорсткості механічної характеристики; і – відповідно критичний момент і критичне ковзання при живленні АД від джерела струму; , де , і – відповідно індуктивний опір кола намагнічування, індуктивний і активний опори обмотки рото-ра, приведені до кола статора при ; – еквівалентна електромагнітна стала часу; – електроме-ханічна стала часу. Технічно-оптимальний перехідний процес в системі згідно рис.11.9 буде при таких параметрах ПІ-регулятора швидкості: і , де – найменша стала часу двигуна . Механічні характеристики в системі ПЧС-АД з частотно-струмо-вим керуванням є абсолютно жорсткими і подібні до характеристик електропривода постійного струму у двоконтурній системі підпо-рядкованого регулювання струму і швидкості з ПІ-регуляторами.
|
|||||||||||||||||
Последнее изменение этой страницы: 2017-02-21; просмотров: 456; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.40.234 (0.009 с.) |