ТОП 10:

Тиристорні керовані випрямлячі



 

Для живлення якірних кіл і кіл обмоток збудження в сучасних електроприводах постійного струму використовують керовані вип-рямлячі (КВ), які часто називають тиристорними перетворювача-ми. Вони перетворюють напругу змінного струму у регульовану напругу постійного струму. При цьому вони можуть працювати в режимі випрямляння і в режимі інвертування, перетворюючи напругу постійного струму у змінну.

Основними перевагами випрямлячів є високі коефіцієнти підси-лення і ККД, мала потужність керування і висока швидкодія. Недо-ліки: пульсація напруги постійного струму, низький коефіцієнт по-тужності при низькій напрузі постійного струму, висока чутливість до перенапруги, викривлення в мережі живлення і значний рівень випромінювання у діапазоні радіочастот.

Керовані випрямлячі, які застосовують для живлення двигунів постійного струму, класифікують за такими ознаками:

Ø за кількістю фаз напруги живлення: однофазні й трифазні;

Ø за вихідною потужністю: малопотужні (до 10кВт), серед-ньої потужності (від 10 до 1000 кВт) і потужні (понад 1000 кВт);

Ø за схемою вмикання вентилів і підмикання навантаження: нульовій й мостові, симетричні й несиметричні;

Ø за зміною полярності вихідної напруги: нереверсивні й реве-рсивні.

Структурна схема КВ складається з силового трансформатора TV, блока тиристорів БТ, згладжуючого дроселя ЗД і системи імпу-льсно-фазового керування блоком тиристорів (СІФК).

Силовий трансформатор TV призначений для узгодження напру-ги мережі живлення і кола навантаження та для зменшення випливу випрямленого струму на мережу живлення. Крім того, він електрично відокремлює коло навантаження від мережі. Блок тирис-торів забезпечує випрямляння й регулювання напруги. Згладжую-чий дросель зменшує пульсацію випрямленого струму. Система імпульсно-фазового керування формує послідовність відкриваючих імпульсів, які змінюють кути відкривання тиристорів відповідно до напруги керування , регулюючи середнє значення випрямленої напруги .

 

 

Рис.4.1. Спрощена структурна схема керованого випрямляча

 

Для обґрунтування вибору типу керованого перетворювача необ-хідно знати його основні характеристики. До них відносяться:

Ø середні значення випрямленої напруги та струму ;

Ø коефіцієнти корисної дії та потужності ;

Ø коефіцієнт випрямної схеми – відношення найбільшого середнього значення випрямленої напруги до діючого значення вихідної наруги трансформатора;

Ø коефіцієнт збільшення розрахункової потужності транс-форматора – відношення повної потужності транс-форматора до потужності випрямленого струму;

Ø коефіцієнт використання вентилів за напругою – відношення максимальної зворотної напруги на вентилях до середнього значення випрямленої напруги;

Ø коефіцієнт використання вентилів за струмом – відношення діючого значення струму вентиля до се-реднього значення випрямленого струму;

Ø коефіцієнт пульсації – відношення певної гармоніки пульсації випрямленої напруги до середнього зна-чення випрямленої напруги;

Ø коефіцієнт спотворення – відношення діючого значення струму основної гармоніки до діючого значення повного струму первинної обмотки трансформатора.

Для зручності порівняння основних випрямних схем у випадку активно-індуктивного навантаження їхні параметри наведені в табл.3.1.

Таблиця 3.1

Схема КВ Коефіцієнти
Однофаз-на мосто- ва симет-рична 0,9 1,57 0,707 1,11 0,667 0,9
Трифазна з нульовим проводом 1,17 2,10 0,58 1,35 0,25 0,827
Трифазна мостова 2,34 1,05 0,58 1,05 0,057 0,955

 

Серед багатьох випрямних схем для живлення двигунів постій-ного струму в залежності від потужності використовують:

Ø однофазну мостову схему (мала потужність);

Ø трифазну нульову схему (середня потужність і низька напруга);

Ø трифазну мостову схему (се-редня і велика потужність та висока напруга).

Однофазна мостова симетрична схема КВ має чотири керовані венти-лі (рис.4.2). У несиметричній схемі два вентилі некеровані (діоди).

Трансформатор у мостовій схемі не є обов’язковим, коли випрямлена напруга менша , бо для неї . Перевагою симетричного КВ є можливість формувати процес зменшення струму при індуктивному навантаженні. Коли такої потреби немає, то доцільно використовувати несиметричну схему КВ, бо схема керування нею простіша.

Багатофазні схеми КВ порівняно з однофазними мають такі пере-ваги: меншу пульсацію випрямленої напруги та струму, симетричне навантаження мережі живлення, краще використання трансформа-тора і вентилів.

Зокрема, трифазна нульова схема (рис.4.3,а) порівняно з однофа-

 

б
а

 

Рис.4.3. Трифазні нульова (а) і мостова схеми КВ

 

зною має такі переваги як вдвоє меншу амплітуду пульсацій випря-мленої напруги і у 1,5 рази менше значення коефіцієнта використа-ння вентилів за струмом. Але коефіцієнт використання вентилів за напругою у 1,33 рази більший. У цій схемі можливе формування процесу зменшення струму при індуктивному навантаженні, але намагнічуючі сили стержнів трансформатора не зрівноважують одна одну і це призводить до насичення осердя трансформатора і, як наслідок, збільшує його потужність.

Трифазна мостова схема КВ є найбільше досконалою за вико-ристанням вентилів за напругою і струмом, бо вона є з’єднанням двох трифазних нульових схем. Пульсації випрямленої напруги мають шестикратну частоту . Тому такі перетворювачі іноді називають умовно шестифазними.

На рис.4.3,б тиристори про-нумеровані у порядку подавання відкриваючих імпульсів. Послі-довність їх комутації ілюструє циклограма на рис.4.4, на якій показані ділянки одночасної роботи вентилів різних груп.

Якщо немає потреби у інверторному режимі роботи КВ, то одну групу тиристорів можна замінити діодами (несиметрична схема). Але при цьому зменшується частота і збільшується амплітуда пульсацій випрямленого струму.

Невелика амплітуда і висока частота пульсацій, ефективне вико-ристання трансформатора й низька зворотна напруга на тиристорах, можливість інверторного режиму і високий ККД зумовили переваж-не використання трифазної мостової схеми в системах автоматизо-ваного електропривода з широким діапазоном регулювання швид-кості.

Реверсивні тиристорні перетворювачі використовують за необхідністю зміни напряму струму у споживачі. Вони складаються з двох комплектів керованих випрямлячів, які з’єднують зустрічно-паралельно або перехресно. В перехресній схемі кожен комплект живиться від окремої обмотки триобмоткового трансформатора, в зустрічно-паралельній – від однієї обмотки, що є її перевагою, бо зменшує потужністю трансформатора майже на 20%.

Системи керування тиристорами поділяються на сумісні (одно-часне керування двома групами) і роздільні (окреме керування групами). У зустрічно-паралельній схемі реверсивного перетворювача з роздільним керуванням керуючі імпульси подаються лише на один комплект тиристорів (на КВ1 або КВ2), що унеможливлює виникнення зрівнювальних струмів між групами в період реверсу-вання. Таку роботу забезпечує логічний перемикальний пристрій ЛПП, який визначає момент, коли струм робочого комплекта стає рівним нулю, блокує подачу на нього імпульсів і після паузи трива-лістю до дозволяє подачу керуючих імпульсів на інший комплект (рис. 4.5).

Полярність вихідної напруги перетворювача задається полярніс-тю напруги керування : сигнал відповідає позитивній напрузі , а сигнал – негативній. ЛПП опрацьовує сигнал і сигнали та , які поступають від давачів наявності струму ДНС1 і ДНС2, і формує логічні сигнали та на СІФК1 чи СІФК2.

 

 

Рис.4.5. Зустрічно-паралельна схема реверсивного КВ

 

Роздільне керування зменшує ймовірність перекидання інверто-ра і збільшує ККД перетворювача завдяки відсутності зрівнюваль-них струмів, що дає певну економію електроенергії і зменшує поту-жність трансформатора. Тому реверсивна схема з роздільним керу-ванням широко використовується. Недолік – наявність паузи до при зміні полярності вихідної напруги.

 







Последнее изменение этой страницы: 2017-02-21; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.235.30.155 (0.005 с.)