Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Компенсация функций, нарушенных в результате мутацийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Первичная мутация может быть компенсирована вторичной мутацией, которая произошла внутри мутировавшего гена (интрагенно) или в другом гене (экстрагенно). Изменения, которые устраняют проявления мутации, не исправляя при этом первоначального нарушения в ДНК, называют супрессией. Интрагенная супрессия вызвана вторичной мутацией, корригирующей эффекты первичной мутации. Например, точечная мутация, приводящая к синтезу дефектного белка с утраченной биологической активностью, может быть исправлена, если вторичная точечная мутация приведёт к кодированию аминокислоты, сохраняющей конфигурацию и активность белка. Точное восстановление исходной структуры гена называют истинной обратной мутацией (истинной реверсией). Если эффект первой мутации компенсирован мутацией в другой части гена, такие мутации называют вторичными реверсиями. Экстрагенная супрессия — подавление проявления мутации, произошедшей в одном гене, вследствие мутации во втором гене. Перенос бактериальной ДНК Длительное время считали, что бактерии — изолированные генетические системы, и каждая особь имеет одного (и только одного) родителя, то есть их изменчивость вызвана лишь мутациями. Никто не мог себе представить, что — подобно гаметам высших организмов — бактерии способны обмениваться генетическим материалом и, по аналогии с половым размножением, давать начало потомству с новыми свойствами. Однако ЛЌдерберг и ТЌйтем (1946), высевая на минеральную среду, предварительно смешав два типа мутантов Escherichia coli (один нуждался в биотине и метионине, другой — в треонине и лейцине), показали, что у бактерий генетические рекомбинанты со способностью к синтезу всех четырёх факторов роста возникают с частотой 10–6, хотя теоретическая вероятность реверсии по двум генам составляет 10–14–10–16 на генерацию. Это противоречие было снято установлением факта прямой передачи генетического материала от донорной клетки к реципиентной (конъюгация). Помимо конъюгации, передача генетического материала у бактерий может осуществляться также с помощью трансформации и трансдукции (рис. 4 – 16). Ы ВЁРСТКА. Рисунок 4–16 Рис. 4 – 16. Механизмы переноса бактериальной ДНК. Конъюгация (А), трансформация с использованием отдельной молекулы ДНК (Б) и трансдукция с помощью фагов (В). Конъюгация Конъюгация — прямой перенос фрагмента ДНК от донорных бактериальных клеток к реципиентным при непосредственном контакте этих клеток. Биологическая значимость этого процесса стала проясняться после внедрения в медицинскую практику антибиотиков. Устойчивость к антибиотикам можно получить в результате мутации, что происходит один раз на каждые 106 клеточных делений. Однако, однажды изменившись, генетическая информация может быстро распространяться среди сходных бактерий благодаря конъюгации, поскольку каждая третья из близкородственных бактерий способна именно к этому типу генетического переноса. Для реализации процесса необходим F-фактор — плазмида, кодирующая информацию, необходимую для конъюгации. Конъюгация требует наличия двух типов клеток: доноров (F +), обладающих F-фактором, и реципиентов (F –), не обладающих им. При скрещивании клеток F– и F+ фактор фертильности передаётся с частотой, близкой к 100%. Фактор переноса содержит гены специальных и необходимых при конъюгации структур — F-пилей и ряд других генов, вовлечённых в процесс взаимодействия с F–-клетками. Первый этап конъюгации — прикрепление клетки-донора к реципиенту с помощью F-пилей. Затем между клетками формируется конъюгационный мостик, через который передаётся F-фактор, а также и другие плазмиды, автономно пребывающие в цитоплазме донора. При попадании F-фактора в реципиентную клетку она становится F+ и приобретает способность передавать фактор фертильности другим F–-клеткам. Подобный механизм обеспечивает приобретение популяционной устойчивости к антибактериальным агентам. В популяции клеток, содержащих F-плазмиду, только те, в которых она интегрирована в бактериальную хромосому (Hfr+-клетки), способны быть донорами хромосомной ДНК. При переносе генетического материала бактериальная ДНК реплицируется, начиная от места включения F-фактора, одна цепь ДНК переносится в реципиентную F–-клетку двигаясь 5`-концом вперёд, тогда как другая остаётся в Hfr+-клетке, то есть донор сохраняет своё генетическое постоянство. После начала конъюгации хромосомный материал переносится, начиная от генов, близких к начальной точке транспорта (рис. 4 – 17). В бактерии-реципиенты обычно попадают первые из переносимых генов, размер которых зависит от времени, в течение которого проходила конъюгация, и очень редко — все гены. Позже всех переносится участок плазмиды, содержащий ген переноса, кодирующий F-пили. Поскольку полная трансмиссия — явление редкое, реципиентная клетка при Hfr-конъюгации обычно остаётся F–. Вслед за процессом переноса в клетке-реципиенте происходит гомологичная рекомбинация между донорской ДНК и собственной ДНК реципиента. Ы ВЁРСТКА. Рисунок 4–17 Рис. 4 – 17. Hfr - конъюгация. Hfr-бактерии функционируют при конъюгации как доноры. Перенос ДНК осуществляется линейно и начинается с удвоения места включения F-фактора (то есть с удвоения точки начала переноса — ТНП). Процесс конъюгации может происходить только при соблюдении ряда условий. • На поверхности реципиентных бактерий должны быть рецепторы пилей, имеющие существенное сродство к F-пилям, что позволяет образовать стабильную связь между пилями и рецепторами. • Для эффективной конъюгации у F-фактора должна быть точка начала репликации, распознаваемая репликативными системами хозяина. • Эффективность Hfr-конъюгации зависит от величины гомологии ДНК. Перенос негомологичного хромосомного материала донора не приведёт к его интеграции с ДНК реципиента. Трансформация Трансформация — генетическое изменение клеток в результате включения в их геном экзогенной ДНК. ФенЏмен открыл ГрЋффит у Streptococcus pneumoniae (1928); позднее О. Эвери, К. МаклеЏд и М. МакКЊрти (1944) выделили трансформирующее начало пневмококков в форме молекулы ДНК (заметим попутно, что именно это и явилось первым прямым доказательством того, что носитель генетической информации — ДНК). Погибшие бактерии постоянно высвобождают ДНК, которая может быть воспринята другими бактериями. Как правило, любая чужеродная ДНК, попадающая в бактериальную клетку, расщепляется эндонуклеазами, но при некоторых условиях такая ДНК может быть включена в геном бактерии. По происхождению ДНК может быть плазмидной либо хромосомной и нести гены, «трансформирующие» реципиента. Подобным путём в популяции могут быть распространены гены, кодирующие факторы вирулентности. В обмене генетической информацией трансформация играет незначительную роль. Стадии. Трансформация протекает в три стадии: 1) адсорбция двухцепочечной ДНК на участках клеточной стенки компетентных клеток; 2) ферментативное расщепление связавшейся ДНК в некоторых случайно расположенных местах с образованием фрагментов 4–5ѓ106 дальтон; 3) проникновение фрагментов ДНК с молекулярной массой не менее 5ѓ105 дальтон, сопровождающееся разрушением одной из цепей ДНК (последний этап энергозависим). Проникшая цепь ДНК рекомбинирует с генетическим материалом реципиентной клетки. Применение при картировании бактериальных генов. Трансформация служит хорошим инструментом для картирования хромосом, поскольку трансформированные клетки включают различные фрагменты ДНК. Определение частоты одновременного приобретения двух заданных характеристик (чем ближе расположены гены, тем более вероятно, что они оба включатся в один и тот же участок ДНК) даёт информацию о взаиморасположении соответствующих генов в хромосоме. Трансдукция Трансдукция — перенос бактериофагом в заражаемую клетку фрагментов генетического материала клетки, исходно содержавшей бактериофаг. Трансдуцирующий бактериофаг обычно переносит лишь небольшой фрагмент ДНК хозяина от одной клетки (донор) к другой (реципиент). Выделено три типа трансдукции: неспецифическая (общая), специфическая и абортивная. В клетке, инфицированной бактериофагом, в ходе сборки дочерней популяции в головки некоторых фагов вместе с вирусной ДНК могут проникнуть фрагменты бактериальной ДНК или плазмиды. Вирусы ограничены в объёме генетического материала в соответствии с объёмом головки. Если ДНК бактериальной клетки расщепляется фагом в нетипичном месте, то чтобы освободить пространство для фрагмента хромосомной ДНК, некоторые участки вирусных ДНК «приносятся в жертву», что приводит к утере определённых их функций. При этом фаговая частица может стать дефектной. Количество аномальных фагов может достигать 0,3% всей дочерней популяции. Образовавшийся фаг и есть частица, вызывающая неспецифическую (общую) трансдукцию. При такой форме трансдукции в клетки-реципиенты могут быть внесены практически любые гены. При неспецифической трансдукции фагом может быть перенесён любой фрагмент ДНК хозяина, а при специфической лишь строго определённые фрагменты ДНК. Наиболее известным примером специфической трансдукции служит трансдукция, осуществляемая фагом l. Поскольку этот фаг при переходе в состояние профага включается в хромосому бактерий между генами, кодирующими синтез галактозы и биотина, именно эти гены он может переносить при трансдукции. При абортивной трансдукции внесённый фрагмент ДНК донора не встраивается в генофор реципиента, а остаётся в цитоплазме, где его ДНК транскрибируется, но не реплицируется. Это приводит к тому, что при клеточном делении он передаётся только одной из дочерних клеток (то есть наследуется однолинейно) и затем теряется в потомстве.
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 437; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.178.145 (0.01 с.) |