В соответствии с определёнными признаками, кодируемыми плазмидными генами, выделяют следующие группы плазмид. 
";


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

В соответствии с определёнными признаками, кодируемыми плазмидными генами, выделяют следующие группы плазмид.



F - плазмиды. При изучении процесса скрещивания бактерий оказалось, что способность клетки быть донором генетического материала связана с присутствием особого F-фактора [от англ. fertility, плодовитость]. Fплазмиды контролируют синтез F-пилей, способствующих спариванию бактерий-доноров (F+) с бактериями-реципиентами (F). В связи с этим можно указать, что сам термин «плазмида» был предложен для обозначения «полового» фактора бактерий (Джошуа ЛЌдерберг, 1952). F-плазмиды могут быть автономными и интегрированными. Встроенная в хромосому F-плазмида обеспечивает высокую частоту рекомбинации бактерий данного типа, поэтому их также обозначают как Hfr - плазмиды [от англ. h igh f requency of r ecombinations, высокая частота рекомбинаций].

R - плазмиды [от англ. resistance, устойчивость] кодируют устойчивость к лекарственным препаратам (например, к антибиотикам и сульфаниламидам, хотя некоторые детерминанты устойчивости правильнее рассматривать как связанные с транспозонами [см. ниже]), а также к тяжёлым металлам. R-плазмиды включают все гены, ответственные за перенос факторов устойчивости из клетки в клетку.

Неконъюгативные плазмиды обычно характерны для грамположительных кокков, но встречаются также у некоторых грамотрицательных микроорганизмов (например, у Haemophilus influenzae, Neisseria gonorrhoeae). Они обычно имеют небольшие размеры (молекулярная масса примерно 1–10ѓ106 дальтон). Обнаруживают большое количество мелких плазмид (более 30 на клетку), так как только наличие такого количества обеспечивает их распределение в потомстве при клеточном деления. Неконъюгативные плазмиды могут быть также перенесены из клетки в клетку при наличии в бактерии одновременно конъюгативных и неконъюгативных плазмид. При конъюгации донор может передать и неконъюгативные плазмиды за счёт связывания генетического материала последних с конъюгативной плазмидой.

Плазмиды бактериоциногении кодируют синтез бактериоцинов — белковых продуктов, вызывающих гибель бактерий того же или близких видов. Многие плазмиды, кодирующие образование бактериоцинов, также содержат набор генов, ответственных за конъюгацию и перенос плазмид. Подобные плазмиды относительно крупные (молекулярная масса 25–150 млн дальтон), их довольно часто выявляют у грамотрицательных палочек. Большие плазмиды обычно присутствуют в количестве 1–2 копий на клетку. Их репликация тесно связана с репликацией бактериальной хромосомы.

Плазмиды патогенности контролируют вирулентные свойства многих видов, особенно энтеробактерий. В частности F-, R-плазмиды и плазмиды бактериоциногении включают tox + -транспозоны (мигрирующий генетический элемент, см. ниже), кодирующие токсинообразование. Нередко tox + -транспозоны кодируют синтез интактных протоксинов (например, дифтерийного или ботулинического), активируемых клеточными протеазами, образование которых контролируют гены бактериальных хромосом.

Скрытые плазмиды. Криптические (скрытые) плазмиды не содержат генов, которые можно было бы обнаружить по их фенотипическому проявлению.

Плазмиды биодеградации. Обнаружен также ряд плазмид, кодирующих ферменты деградации природных (мочевина, углеводы) и неприродных (толуол, камфора, нафталин) соединений, необходимых для использования в качестве источников углерода или энергии, что обеспечивает им селективные преимущества перед другими бактериями данного вида. Патогенным бактериям подобные плазмиды придают преимущества перед представителями аутомикрофлоры.

Мигрирующие генетические элементы

Мигрирующие генетические элементы — отдельные участки ДНК, способные осуществлять собственный перенос (транспозицию) внутри генома. Транспозиция связана со способностью мигрирующих элементов кодировать специфический фермент рекомбинации — транспозазу.

Вставочные (инсерционные) последовательности [IS-элементы (англ. i nsertion, вставка, + s equence, последовательность)] — простейший тип мигрирующих элементов (рис. 415, А); их величина не превышает 1500 пар оснований (в среднем 800–1400). IS - элементы самостоятельно не реплицируются и не кодируют распознаваемых фенотипических признаков. Содержащиеся в них гены обеспечивают только их перемещение из одного участка в другой. Основные функции IS - последовательностейрегуляция активности генов бактериальной клетки (могут инактивировать гены, в которые включились, или, встраиваясь в хромосому, проявлять эффект промотора, включающего либо выключающего транскрипцию соответствующих генов), индукция мутаций типа делеций или инверсий (при перемещении) и дупликаций (при встраивании в хромосому), координация взаимодействий плазмид, траспозонов и профагов (как между собой, так и бактериальной хромосомой).

Транспозоны (Tn-элементы) состоят из 2000–25 000 пар нуклеотидов, содержат фрагмент ДНК, несущий специфические гены, и два концевых IS-элемента (рис. 415, Б). При включении в ДНК бактерий транспозоны вызывают дупликации, при выходе из определённого участка ДНКделеции, при выходе и включении обратно с поворотом фрагмента на 180°инверсии. Транспозоны не способны к самостоятельной репликации и размножаются только в составе бактериальной хромосомы. Каждый транспозон обычно содержит гены, привносящие важные для бактерии характеристики типа множественной устойчивости к антибактериальным агентам. Поскольку транспозоны содержат гены, определяющие фенотипически выраженные признаки (например, устойчивость к антибиотикам), то их легче обнаружить, чем IS-элементы. В общем, для транспозонов характерны те же гены, что и для плазмид (гены устойчивости к антибиотикам, токсинообразования, дополнительных ферментов метаболизма).

Умеренные и дефектные бактериофаги также могут быть факторами изменчивости, напоминая по своим свойствам интегрированные плазмиды. Встраиваясь в бактериальную хромосому в форме профага (провируса), они вызывают лизогенизацию бактерий, которые могут приобретать новые свойства (см. также гл. 5).

Ы ВЁРСТКА. Рисунок 4–15

Рис. 415. Инсерционная последовательность (А), транспозон (Б).

Бактериофаги, как мигрирующие генетические элементы. В некоторых ситуациях факторами изменчивости могут быть умеренные, или дефектные, фаги, поскольку они могут встраиваться в хромосому (состояние профага) и выходить из неё, захватывая иногда и гены хромосомы клетки-хозяина (см. раздел «Трансдукция»). Например, ї-бактериофаг сходен с IS-элементами и транспозонами, так как способен включаться практически в любой участок бактериальной хромосомы, привнося свой генетический материал и вызывая мутагенный эффект. Сохраняя все типичные свойства фага, ї-бактериофаг можно рассматривать как гигантский транспозон.

Мутации у бактерий

Информация, которую несёт ДНК, не является чем-то абсолютно стабильным. Если бы она была таковой, то диапазон реакций родственных микроорганизмов на внешнее воздействие был бы постоянным, а значит, внезапное изменение условий внешней среды для микроорганизмов с "застывшим" генотипом привело бы к исчезновению вида. Реальная нестабильность генома вызвана мутациями, обменом генетической информацией между донором и реципиентом (см. ниже).

Термин «мутация» предложил де Фриз как понятие «скачкообразного изменения наследственного признака» при изучении наследственности у растений. Позднее БЌйеринк распространил это понятие и на бактерии. Мутацияизменение первичной структуры ДНК, проявляющееся наследственно закреплённой утратой или изменением какого - либо признака или группы признаков. Мутации подразделяют по происхождению, характеру изменений структуры ДНК, фенотипическим последствиям для клетки-мутанта и др. Факторы, вызывающие мутации, известны как мутагены. Они обычно имеют физическую или химическую природу. По происхождению выделяют мутации индуцированные, то есть вызванные искусственно, и спонтанные («дикие», возникают в популяции бактерий без видимого вмешательства извне).

Спонтанные мутации

К появлению спонтанных мутаций приводят ошибки репликации, неправильное формирование комплементарных пар оснований или структурные искажения ДНК под действием естественный мутагенов. Спонтанные мутации могут вызывать благоприятные и неблагоприятные генетические изменения. Примерный уровень спонтанного мутирования — одна мутация на каждые 106–107 клеток. Численная доля мутантов в клеточной популяции для разных признаков различна и может варьировать от 10–4 до 10–11. Для конкретного гена частота мутирования составляет величину порядка 10–5, а для определённой пары нуклеотидов 10–8. Например, если на среду с антибиотиком посеять миллион бактерий, можно ожидать, что в результате спонтанной мутации одна колония выживет.

• Несмотря на то, что уровень мутаций в популяции бактерий для отдельных клеток кажется незначительным, нужно помнить, что популяция бактерий огромна, и они размножается быстро. Следовательно, уровень мутаций с точки зрения целой популяции довольно значителен. Кроме того, появившиеся спонтанно и устойчивые к действию какого-либо антибиотика мутанты имеют при размножении преимущество по сравнению с “диким” типом бактерий и быстро образуют устойчивую популяцию.

Обратные мутации (реверсии) возвращают спонтанно мутировавшую клетку к исходному генетическому состоянию. Их наблюдают с частотой одна клетка на 107–108 (то есть по меньшей мере в десять раз реже, чем прямые спонтанные мутации).

Индуцированные мутации

Химический мутагенез. Некоторые химические вещества (мутагены) значительно повышают частоту мутирования до одной мутантной клетки на 103–104 клеток. К таким веществам относят аналоги азотистых оснований (например, бромурацил), включающиеся в молекулу ДНК и вызывающие вставку некорректного основания при репликации (в частности, бромурацил аналогичен по структуре тимину, он включается в ДНК как партнёр аденина, а затем переходит в енольную форму и узнаётся полимеразой как цитозин, что приводит к включению гуанина вместо аденина); алкилирующие агенты (например, этилметансульфонат алкилирует преимущественно атом азота гуанина); азотистая кислота, дезаминирующая азотистые основания; интеркалирующие агенты (например, акридиновые красители), внедряющиеся между основаниями ДНК и вызывающие увеличение расстояния между ними, что приводит к утрате нуклеотидов, включению дополнительной пары нуклеотидов и др.

Радиационный мутагенез обычно приводит к образованию пиримидиновых димеров. УФ-, рентгеновские лучи и другие виды ионизирующего излучения оказывают на микроорганизмы как летальное (подавляющее жизнедеятельность), так и мутагенное воздействие.

Типы мутаций

Мутации могут индуцировать следующие события: модификации оснований (изменения отдельных нуклеотидов), вставки (включение дополнительных оснований), делеции (потеря одного основания или группы оснований) и деформации спирали ДНК.

Модификация оснований включает химическое изменение азотистого основания в кодирующей последовательности, что приводит к изменению кодона. В результате вместо одной аминокислоты кодируется другая либо возникает бессмысленный кодон.

Вставка либо делеция какого-либо основания (аналогов оснований) в ДНК приводит к фреймшифт - мутациям (мутации со сдвигом рамки считывания), что вызывает изменение позиции рамки считывания триплетного кодона, и, таким образом, изменение всех последующих кодонов.

Деформации спирали ДНК (структурные искажения ДНК) образуются в результате индуцированной УФ-излучением димеризации расположенных близко нуклеотидов (особенно тимина). Образовавшееся циклобутановое кольцо нарушает симметрию ДНК и препятствует правильной репликации. Репликация может быть нарушена также при образовании поперечных межцепочечных сшивок ДНК.

В зависимости от синтеза «правильных» или «неправильных» полипептидов при считывании мРНК, отразившей изменения ДНК (то есть в зависимости от сохранения смысловой функции образующегося полипептида), различают несколько видов мутаций.

• «Молчащие» мутации (мутации «без изменения смысла», то есть не вызывающие изменения аминокислотной последовательности белка). Их появление возможно вследствие вырожденности генетического кода. Получившийся в результате мутирования триплет кодирует ту же самую аминокислоту, что и исходный триплет, поэтому синтезируемый белок остаётся без изменений.

Миссенс - мутации (мутации «с изменением смысла») возникают при условии, что изменения кодирующей последовательности приводят к появлению в полипептиде иной аминокислоты. Получающийся изменённый белок может быть функциональным или нефункциональным в зависимости от значимости затронутой мутацией области.

Нонсенс - мутации («антисмысловые», «бессмысленные» мутации) приводят к образованию одного из трёх кодонов-терминаторов (УАГ, УАА, УГА), вызывающих преждевременное окончание синтеза полипептидной цепи. Когда рибосома достигает такого кодона, процесс элонгации полипептидной цепи заканчивается, и высвобождается неполный пептид (вероятно, такое действие терминальных кодонов обусловлено отсутствием тРНК, связывающихся с данными кодонами). Эта мутация приводит либо к синтезу очень коротких нефункциональных белков, либо к полному прекращению синтеза белка.

Репарация ДНК

В клетке существуют механизмы, способные полностью или частично восстанавливать исходную структуру изменённой ДНК. Мутации, вызванные радиацией, химическими веществами и другими факторами, теоретически могли бы привести к вымиранию бактериальной популяции, если бы последняя была лишена способности к репарации ДНК. Совокупность ферментов, катализирующих коррекцию повреждений ДНК, объединяют в так называемые системы репарации, принципиально различающиеся по биохимическим механизмам «залечивания» повреждений. Известно три основных направления коррекции дефектов ДНК.

1. Непосредственная реверсия от повреждённой ДНК к исходной структуре, когда изменения в ДНК исправляется с помощью единственной ферментативной реакции. Например, удаление неправильно присоединённой метильной группы при шестом атоме кислорода гуанина с помощью метилтрансферазы; или расщепление возникшего в результате облучения тиминового димера с помощью фотолиазы (рекомбинационная репарация).

2. «Вырезание» повреждений с последующим восстановлением исходной структуры (эксцизионная репарация).

3. Активация особых механизмов, обеспечивающих выживание при повреждениях ДНК (восстановление исходной структуры ДНК в результате рекомбинации; коррекция ошибочного спаривания оснований; трансляционный синтез на повреждённой матрице ДНК). Эти механизмы не всегда приводят к полному восстановлению исходной структуры ДНК.



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 504; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.102.239 (0.004 с.)