Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные функции клеточной стенки следующие.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
• Клеточная стенка защищает бактерии от внешних воздействий, придаёт им характерную форму, поддерживает постоянство внутренней среды и участвует в делении. • Через клеточную стенку бактерий осуществляется транспорт питательных веществ и выделение метаболитов. • На поверхности клеточной стенки располагаются рецепторы для бактериофагов, бактериоцинов и различных химических веществ. • Структура и состав элементов клеточной стенки определяет антигенную характеристику бактерий (по структуре О - и Vi -Аг). • Клеточная стенка способна по-разному воспринимать красители; на этом основаны тинкториальные свойства бактерий. • Нарушение синтеза компонентов клеточной стенки приводит к гибели бактерии или образованию L -форм. Пептидогликан. Опорный каркас клеточной стенки бактерий — пептидогликан (муреин) — гетерополимер, состоящий из повторяющихся дисахаридных групп, соединённых поперечными и боковыми цепочками (рис. 4 – 3). «Остов» молекулы пептидогликана — дисахарид. Его образуют N - ацетилглюкозамин и N - ацетилмурамовая кислота, соединённые через †-гликозидные связи. К молекуле N-ацетилмурамовой кислоты присоединяются олигопептиды, образующие боковые цепочки. Ы ВЁРСТКА. Рисунок 4–03 Рис. 4 – 3. Структура пептидогликана (муреина) Escherichiacoli. Гетерополимерные цепочки, состоящие из чередующихся остатков N-ацитилглюкозамина (N-АцГлю) и N-ацетилмурамовой кислоты (N-АцМур), связаны между собой аминокислотными мостиками. Слева — детальное строение фрагмента пептидогликана. Справа — схематическое изображение структуры однослойного муреинового мешка. Связывание фрагментов пептидогликана заключается в образовании пептидной связи между терминальным остатком аминокислотного мостика (D-аланином) с предпоследним остатком примыкающего аминокислотного мостика (L-лизином или диаминопимелиновой кислотой в зависимости от вида бактерии). Боковые мостики образуют четыре аминокислоты, поперечные (вертикально связывающие слои пептидогликана) — пять аминокислот. В состав боковых мостиков также входят уникальные аминокислоты, присутствующие только у прокариот, например, диаминопимелиновая кислота (у большинства грамотрицательных бактерий) и D-изомеры глутаминовой кислоты и аланина. Эти соединения — «ахиллесова пята» бактерий, так как препараты, ингибирующие синтез компонентов клеточной стенки, обычно безвредны для растений и животных. Пептидогликан лабилен к действию различных агентов. В частности, лизоцим гидролизует пептидогликан, расщепляя гликозидные связи между N-ацетилглюкозамином и N-ацетилмурамовой кислотой, то есть лизоцим действует как N - ацетилмурамидаза. Пептидазы расщепляют межпептидные связи, амидазы — связи между N-ацетилмурамовой кислотой и боковым пептидом (L-аланином). Лизостафин разрушает поперечные мостики пептидогликанов стафилококков. †-Лактамные антибиотики нарушают связывание боковых мостиков. Гетерополимерные пептидогликановые цепочки, соединённые пептидными связями, образуют гигантскую мешковидную макромолекулу («муреиновый мешок»), покрывающую всё тело бактерии. На поверхности «муреинового мешка» и в его толще располагаются различные вещества, характер и содержание которых лежит в основе разделения бактерий на грамположительные и грамотрицательные (рис. 4 – 4). Ы ВЁРСТКА. Рисунок 4–04 Рис. 4 – 4. Клеточная стенка грамотрицательных (А) и грамположительных (Б) бактерий. Грамотрицательные бактерии. Грамотрицательные бактерии имеют сравнительно тонкую клеточную стенку. В ней выделяют два слоя — пластичный и ригидный. Последний образован одним, редко двумя слоями пептидогликана, содержание которого составляет не более 20% сухой массы клеточной стенки. На пептидогликановом каркасе расположены фосфолипиды, липополисахарилы (ЛПС) и белки, образующие пластичный слой. Толщина пластичного слоя значительно превышает размеры монослоя пептидогликана. Его компоненты расположены мозаично и могут образовывать дополнительную внешнюю мембрану либо переходить в капсулу. • Фосфолипиды пластичного слоя прикреплены к пептидогликану липопротеинами, пересекающими периплазматическое пространство. Обработка детергентами (например, додецилсульфатом натрия) приводит к нарушению этих связей. Основное отличие внешнего фосфолипидного слоя от внутреннего ригидного — высокое содержание ЛПС. • ЛПС состоят из липидной части (липид А), базисной части молекулы полисахарида (сердцевина) и боковых полисахаридных цепей (рис. 4 – 5). Иммуногенные свойства проявляют боковые полисахаридные цепи и сердцевина. Боковые полисахаридные цепи отвечают за антигенную специфичность молекулы ЛПС и называются О - Аг. Липидная часть термоустойчива и отвечает за биологические эффекты ЛПС. Структура ЛПС имеет большое диагностическое значение, поскольку разные виды или серовары патогенных грамотрицательных бактерий отличаются друг от друга составом боковых цепей ЛПС внешней мембраны. Ы ВЁРСТКА. Рисунок 4–05 Рис. 4 – 5. Строение ЛПС клеточной стенки грамотрицательных бактерий. • Белки, входящие в состав пластичного слоя, подразделяют (в зависимости от выполняемых функций) на основные (мажорные) и второстепенные (минорные). К мажорным белкам относят порины, образующие трансмембранные каналы, вовлечённые в транспорт ионов и гидрофильных соединений из внешней среды в периплазму. Минорные белки также могут участвовать в транспорте веществ через пластичный слой (путём облегчённой диффузии или активного транспорта молекул). Некоторые белки играют роль рецепторов для вирусов бактерий и бактериоцинов, а также для донорских пилей при конъюгации. Внешняя мембрана не пропускает молекулы с большой молекулярной массой, что можно рассматривать как фактор неспецифической устойчивости бактерий к некоторым антимикробным препаратам. Грамположительные бактерии. Грамположительные бактерии имеют сравнительно просто организованную, но мощную клеточную стенку. Она состоит преимущественно из множества слоёв пептидогликана, составляющего до 90% её сухой массы (см. рис. 4 – 4), часто включающих вместо диаминопимелиновой кислоты лизин и уникальные водорастворимые полимеры тейхоевых кислот, состоящих из 8–50 остатков глицерина или рибита, связанных между собой фосфодиэфирными связями. Тейхоевые кислоты [от греч. teichos, стенка] могут составлять до 50% сухого веса клеточной стенки. Известно два типа кислот — рибиттейхоевые (состоят из остатков рибитфосфата и 10–50 остатков спирта) и глицеринтейхоевые (состоят из остатков глицерофосфата и 20 остатков спирта). Клеточная стенка каждого вида содержит только один тип тейхоевых кислот (за исключением вида Streptomyces). Тейхоевые кислоты — основные поверхностные Аг многих бактерий. У большей части грамположительных бактерий также имеются периплазматические тейхоевые кислоты, располагающиеся между клеточной стенкой и ЦПМ. Периплазматические кислоты, выявляемые горячей кислотной экстракцией, являются группоспецифичными Аг. Клеточная стенка грамположительных бактерий не содержит ЛПС, но может включать различные белки. Содержание последних весьма вариабельно. Для некоторых бактерий (например, стрептококков группы А) белки служат серовароспецифичными Аг. Аутолизины. Клеточные стенки бактерий содержат аутолизины — ферменты, растворяющие пептидогликановый слой. Их активность необходима для процессов роста клеточной стенки, деления клеток, споруляции и достижения состояния компетентности при трансформации (см. ниже). Удаление клеточной стенки, защищающей прилежащую ЦПМ, приводит к лизису бактерии либо к образованию протопластов или сферопластов (из грамположительных или грамотрицательных бактерий соответственно). Бактерии, лишённые клеточной стенки, лишь в изотонической среде способны поглощать О2 и выделять СО2, а также размножаться. Сферопласты более устойчивы к изменениям осмотического давления и длительно сохраняются в неизотонической среде. Цитоплазматическая мембрана ЦПМ играет важную роль в обмене веществ бактерий, играя роль осмотического барьера, контролирующего поступление и выход различных веществ из клетки. Иными словами, ЦПМ — физический, осмотический и метаболический барьер между внутренним содержимым бактериальной клетки и внешней средой. Состав. Как и многие биологические мембраны, ЦПМ состоит из двух слоёв липидов и встроенных в липидную мембрану белковых молекул. В состав ЦПМ бактерий входят белки (20–75%), липиды (25–40%), углеводы и РНК (последние два компонента присутствуют в незначительных количествах). Компоненты ЦПМ составляют около 10% сухого веса бактериальной клетки. Белки ЦПМ подразделяют на структурные и функциональные. Первые образуют различные структуры ЦПМ, вторые представлены ферментами, участвующими в синтетических реакциях на поверхности мембраны и в окислительно-восстановительных процессах, а также некоторыми специализированными энзимами (например, пермеазы). Липиды, входящие в состав ЦПМ, представлены насыщенными или мононенасыщенными жирными кислотами, но не стеринами, как у эукариотических клеток. Транспортные системы. Для ЦПМ характерна выраженная избирательная проницаемость. В ней располагаются системы активного переноса и субстратспецифичных пермеаз. Некоторые белковые молекулы, «вкрапленные» в фосфолипидный бислой, играют роль «пор», через которые движется регулируемый поток веществ. У аэробных бактерий и анаэробов, способных к так называемому «анаэробному дыханию», в ЦПМ встроена система электронного транспорта, обеспечивающая её энергетические потребности. Самые крупные молекулы, способные проходить через ЦПМ, — фрагменты ДНК. Мезосомы. ЦПМ образует специфические инвагинаты — мезосомы, имеющие вид закрученных в спираль или клубок трубчатых образований. Мезосомы образуют поперечные перегородки между делящимися клетками; к ним обычно прикрепляется бактериальная хромосома. Периплазматическое пространство. У некоторых бактерий между ЦПМ и клеточной стенкой располагается периплазматическое пространство — полость шириной около 10 нм. В периплазматическом пространстве имеются перемычки, соединяющие ЦПМ и пептидогликановый слой. Снаружи в периплазматическое пространство открываются поры клеточной стенки, изнутри в это пространство выходят некоторые клеточные ферменты (рибонуклеазы, фосфатазы, пенициллиназа и др.). Цитоплазма Цитоплазма бактерий представляет собой коллоидный матрикс, служащий для реализации жизненно важных функций. Цитоплазма большинства бактерий содержит ДНК, рибосомы и запасные гранулы; остальное пространство занимает коллоидная фаза. Её основные составляющие — растворимые ферменты и растворимые РНК (мРНК и тРНК). Разнообразные органеллы, характерные для эукариотической клетки, у бактерий отсутствуют, а их функции выполняет бактериальная ЦПМ, отделяющая цитоплазму от клеточной стенки. У подавляющего числа бактерий цитоплазма относительно неподвижна, но у видов Streptococcus, Proteus, Clostridium имеются специальные трубочки — рапидосомы, аналогичные микротрубочкам простейших. Бактериальный геном. В бактериальной клетке нет ядерной мембраны, ДНК сконцентрирована в цитоплазме в виде клубка. Поскольку в эукариотических клетках ДНК обычно находится в ядре, то по аналогии ДНК бактерий назвали нуклеЏидом [от лат. nucleus, ядро + греч. eidos, сходство]. Её также называют генофЏром, или бактериальной хромосомой. Генофор бактерий представлен двойной спиральной, кольцевой, ковалентно замкнутой суперспирализованной молекулой ДНК. Она составляет 2–3% сухой массы клетки (более 10% по объёму). Генофор не содержит гистонов. Объём генетической информации, кодируемой в генофоре, различается в зависимости от вида бактерии (например, геном Escherichia coli кодирует примерно 4000 различных полипептидов). У бактерий может присутствовать дополнительная ДНК в виде включений. Эти включения, или плазмиды, несут ряд различных генов, кодирующих дополнительные свойства бактерий, но информация, содержащаяся в плазмидах, не является абсолютно необходимой для бактериальной клетки. Бактериальные рибосомы Бактериальные рибосомы — сложные глобулярные образования, состоящие из различных молекул РНК и связанных с ними белков. Всё образование функционирует как локус синтеза полипептидов. В зависимости от интенсивности роста бактериальная клетка может содержать от 5000 до 50 000 рибосом. Диаметр бактериальных рибосом около 16–20 нм. Скорость их осаждения при ультрацентрифугировании составляет 70 S (единиц СвЌдберга), тогда как у эукариотических клеток — 80 S. Рибосомы бактерий состоят из двух субъединиц с коэффициентом седиментации 50 S и 30 S (у эукариот 40 S и 60 S). Объединение субъединиц происходит перед началом трансляции. Рибосомы прокариот и эукариот имеют сходную молекулярную структуру и механизмы функционирования, но различаются, помимо размеров, по составу белков и белковых факторов. Эти различия делают рибосомы эукариот практически резистентными к действию антибиотиков, блокирующих синтез белка у бактерий. Запасные гранулы Запасные гранулы содержат временный избыток метаболитов; наличие и количество гранул изменяется в зависимости от вида бактерий и их метаболической активности. В виде гранул могут запасаться полисахариды (крахмал, гликоген, гранулёза), жиры (триглицериды, сходные с жирами высших животных, запасаются у дрожжей рода Candida) воскЊ — у микобактерий и нокардий; полимеры b- оксимасляной кислоты (например, в клетках Bacillus megaterium), полифосфаты (волютин) у Spirillum volutans и Corynebacterium diphtheriae, сера (у бактерий, окисляющих сульфиды), кристаллизованные белки (например, токсичный для насекомых протоксин у Bacillus thuringiensis). Физиология бактерий Жизнь бактерий, как и других живых существ, в упрощённом виде сводится к таким последовательным событиям: собственное воспроизведение ј обеспечение жизненных функций ј воспроизведение потомства. Нормальная реализация этого круговорота жизни для любого вида бактерий возможна лишь при развитии адекватных ответных реакций на любые воздействия окружающей среды, что во многом обеспечивается генетической информацией организма. Жизнь бактерий, равно как и всех живых существ, характеризуется ростом и размножением, то есть увеличением живой массы отдельной особи и популяции в целом за счёт ассимиляции веществ, находящихся вне клетки. В данном аспекте нет никакой существенной разницы между питанием паразитической бактерии или автотрофной бактерии, использующей, подобно высшим растениям, углекислоту и минеральные вещества. Во всех случаях процесс питания сводится к усвоению экзогенных субстратов и превращению их (через каскад сложных реакций) в вещества, необходимые для нормальной жизнедеятельности бактерий. Питание бактерий Пищей принято называть любое вещество, которое, попав в организм, служит источником энергии или пластическим материалом для синтеза молекул, используемых для нужд организма. Большинство животных, включая человека, способно заглатывать и переваривать плотные частички пищи в основном за счёт их гидролиза. Подобный тип питания известен как голозойный, а организмы — голозои [от греч. holos, полноценный, + zІikos, относящийся к животным]. Бактерии не способны захватывать твердофазные объекты, поэтому утилизируют питательные вещества в виде относительно простых молекул из водных растворов. Подобный тип питания, присущий также всем растениям, известен как голофитный, то есть бактерии — голофиты [от греч. holos, полноценный, + phytikos, относящийся к растениям]. Тем не менее, многие бактерии способны утилизировать твёрдую пищу с помощью так называемого внешнего питания, реализуемого вне клеток, то есть бактериям также присущ и голозойный тип питания. Для этого они имеют мощный ферментативный потенциал, хотя иногда секретируемые ферменты могут полностью инактивироваться в результате разведения, под действием конвекционных токов и других факторов. Контакт пищеварительных ферментов с экзогенным субстратом приводит к образованию низкомолекулярных продуктов, проникающих через клеточную стенку в цитоплазму. Начиная с этого момента, процессы их усвоения (метаболизма) в растительных и животных клетках протекают удивительно сходно. Клетки всех живых существ, от самых примитивных форм до высокоразвитых животных и растений, не только состоят из одних и тех же веществ, но и используют одни и те же механизмы для получения энергии и для роста. По сравнению с этим фундаментальным биохимическим единством существующие различия и отклонения кажутся незначительными. Вода Вода составляет около 80% массы бактерий. Рост и развитие бактерий облигатно зависят от наличия воды, так как все химические реакции, протекающие в живых организмах, реализуются в водной среде. Для нормального роста и развития микроорганизмов необходимо присутствие воды в окружающей среде. Для бактерий содержание воды в субстрате должно быть более 20%. Вода должна находиться в доступной форме: в жидкой фазе в интервале температур от 2 °С до 60 °С; этот интервал известен как биокинетическая зона. Хотя в химическом отношении вода весьма устойчива, продукты её ионизации — ионы Н+ и ОН– оказывают очень большое влияние на свойства практически всех компонентов клетки (белков, нуклеиновых кислот, липидов и т.д.). Так, каталитическая активность ферментов в значительной мере зависит от концентрации ионов Н+ и ОН–. Усваиваемые соединения Основные соединения, усваиваемые бактериальной клеткой — углеводы, аминокислоты, органические кислоты, жирные кислоты, минеральные вещества, витамины и др. Бактериям совершенно безразличны источники питательных веществ; образно говоря, они «лишены вкуса и не страдают несварением желудка». Более того, бактерии иногда утилизируют вещества, не пригодные для животных клеток (например, карболовую кислоту, парафин, мыло и др.). Подобно прочим формам жизни, бактерии нуждаются в одних и тех же макроэлементах — С, Н, О, N, P, S, K, Са, Mg, Fe. Микроэлементы (следовые элементы) — Mn, Mo, Zn, Cu, Co, Ni, Va, B, Cl, Na, Se, Si, Wo — не нужны каждому организму, но бактериям они необходимы для синтеза коферментов либо поддержания специфического типа метаболизма. Например, для оптимального роста некоторые бактерии нуждаются в высоких концентрациях Na+; их называют галофилами [от греч. hals, cоль]. Помимо источников углерода, энергии и элементов минерального питания, многие микроорганизмы нуждаются в некоторых дополнительных веществах, называемых факторами роста. Количественная потребность в питательных элементах и их содержание у различных бактерий варьируют, но принципиально химический состав бактериальной клетки сходен с другими живыми клетками (исключением является отсутствие у бактерий стеролов).
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 746; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.123.240 (0.013 с.) |