Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Нормальная кишечная микрофлора играет огромную роль в метаболических процессах организма и поддержании их баланса.

Поиск

Обеспечение всасывания. Метаболизм некоторых веществ включает печёночную экскрецию (в составе жёлчи) в просвет кишечника с последующим возвратом в печень; подобный печёночно-кишечный круговорот характерен для некоторых половых гормонов и солей жёлчных кислот. Эти продукты экскретируются, как правило, в форме глюкуронидов или сульфатов, не способных в этом виде к обратному всасыванию. Всасывание обеспечивают кишечные бактерии, вырабатывающие глюкуронидазы и сульфатазы. Сульфатазы могут оказывать и неблагоприятное действие, установленное на примере искусственного подсластителя цикламата. Фермент конвертирует цикламат в канцерогенный продукт циклогексамин, вызывающий злокачественное перерождение эпителия мочевого пузыря.

Обмен витаминами и минеральными веществами. Общепринятый факт — ведущая роль нормальной микрофлоры в обеспЌчении организма человека ионами Fe2+, Ca2+, витаминами К, D, группы В (особенно В1, рибофлавин), никотиновой, фолиевой и пантотеновой кислотами. Кишечные бактерии принимают участие в инактивации токсичных продуктов эндо- и экзогенного происхождения. Кислоты и газы, выделяющиеся в ходе жизнедеятельности кишечных микробов, оказывают благоприятное действие на перистальтику кишечника и своевременное его опорожнение.

Дисбактериоз

На состав микробных сообществ полостей организма влияют различные факторы: состав и качество пищи, курение и употребление алкоголя, нормальная перистальтика и своевременное опорожнение кишечника и мочевого пузыря, качество пережёвывания пищи и даже характер трудовой деятельности (сидячий или иной). Наибольшее воздействие оказывают заболевания, связанные с изменениями физико-химических свойств эпителиальных поверхностей (например, синдром мальабсорбции), и приём антимикробных препаратов широкого спектра, действующих на любые, в том числе непатогенные микроорганизмы. В результате выживают более устойчивые виды — стафилококки, кандиды и грамотрицательные палочки (энтеробактерии, псевдомонады). Следствие этого — стойкие нарушения микробных ценозов — дисбактериозы, или дисбиозы. Наиболее тяжёлые формы дисбактериозов — стафилококковый сепсис, системный кандидоз и псевдомембранозный колит; среди всех форм доминируют поражения микрофлоры кишечника.

Показания для бактериологической диагностики дисбактериоза кишечника: длительно протекающие инфекции и расстройства, при которых не удаётся выделить патогенные энтеробактерии; затяжной период реконвалесценции после перенесённой кишечной инфекции; дисфункции ЖКТ на фоне или после проведённой антибиотикотерапии или у лиц, постоянно контактирующих с антимикробными препаратами. Исследования также следует проводить при болезнях злокачественного роста, у страдающих диспептическими расстройствами, лиц, подготавливаемых к операциям на органах брюшной полости, недоношенных или травмированных новорождённых, а также при наличии бактериемий и гнойных процессов, трудно поддающихся лечению (язвенные колиты и энтероколиты, пиелиты, холециститы и др.).

Посевы изучают на наличие патогенных микроорганизмов и на нарушение соотношения различных видов микробов. Результаты исследования следует считать объективными при анализе роста изолированных колоний в том случае, если можно изучить морфологию и подсчитать количество колоний на чашку ПЌтри. После идентификации проводят пересчёт содержания микроорганизмов каждого вида на 1 г исследуемого материала. При обнаружении патогенной микрофлоры необходимо изучить её чувствительность к антибактериальным препаратам и бактериофагам. При определении чувствительности следует отдавать предпочтение антибиотикам узкого спектра для возможно более направленного подавления патогенов.

К оценке результатов следует подходить осторожно, поскольку состав кишечной микрофлоры варьирует. Необходимо отличать истинный дисбактериоз от дисбактериальных реакций (сдвиги в составе микрофлоры незначительны, либо кратковременны и не требуют специфической коррекции). При истинном дисбактериозе нарушения микробного ценоза обычно коррелируют с клиническими проявлениями, и их нормализация достаточно длительна (20–30 сут). При оценке результатов следует указать наличие или отсутствие патогенной микрофлоры и дать состав присутствующих микроорганизмов.

Повторные исследования. Следует отразить положительную или отрицательную динамику изменения в составе микробных сообществ.

Коррекция дисбактериозов. Для коррекции дисбактериозов следует применять эубиотики — взвеси бактерий, способные восполнить численность недостающих или дефицитных видов. В отечественной практике широко применяют бактерийные препараты в виде высушенных живых культур различных бактерий, например, коли-, лакто- и бифидобактерины (содержащие соответственно Escherichia coli, виды Lactobacillus и Bifidobacterium), бификол (содержащий виды Bifidobacterium и Escherichia coli), бактисубтил (культура Bacillus subtilis) и др.

Факторы внешней среды и микроорганизмы

Микроорганизмы подвержены постоянной воздействию факторов внешней среды. Влияние этих факторов может быть благоприятным либо неблагоприятным. Неблагоприятные воздействия могут приводить к гибели микроорганизмов, то есть оказывать микробицидный эффект (например, фунги- или вирулицидный), либо подавлять размножение микробов, оказывая статическое действие (например, бактериостатическое). Неблагоприятное воздействие на микроорганизмы факторов внешней среды люди использовали с древнейших времён. Например, погреба часто окуривали серой; во время эпидемий для обеззараживания предметов их прокаливали или обрабатывали специальными составами (например, смесью уксуса и винного спирта). Открытие и изучение свойств патогенных микроорганизмов стало началом направленной разработки методов подавления жизнедеятельности микробов. Было установлено, что некоторые воздействия оказывают избирательный эффект на отдельные виды, другие — проявляют широкий спектр активности.

Физические факторы

На жизнедеятельность микроорганизмов влияют температурные воздействия, высушивание, различные виды излучения и осмотическое давление внешней среды.

Температура

Микробы приспосабливаются к изменениям температуры окружающей среды. Выделяют оптимальную температуру (благоприятную для роста и размножения), минимально и максимально приемлемые (за их пределами рост прекращается). По отношению к температурным условиям микроорганизмы разделяют на мезофильные, психрофильные и термофильные.

Мезофильныевиды [от греч. mesos, средний, промежуточный, + phileІ, любить] лучше растут в пределах 20–40 °С; к ним относится большинство патогенных и условно-патогенных микроорганизмов.

Термофильные виды [от греч. therm (e), тепло, + phileІ, любить] быстрее растут при температуре выше 40 °С, верхний предел 70 °С (примеры — Thermoactinomyces vulgaris, Bacillus stearothermophilus). К термотолерантным относят микробов, растущих при повышении температуры до 50 °С (например, Methylococcus capsulatus); к крайне термофильным — виды, для которых оптимальная температура роста превышает 65 °С (Sulfolobus). Отдельные виды бактерий способны расти при температуре выше 70 °С: Sulfolobus acidocaldarius растёт при 80 °С, а Pyrodictium occultum (строгий анаэроб, восстанавливающий серу) — при 105 °С.

Психрофильные виды [от греч. psychros, холод, + phileІ, любить] растут в диапазоне температур 0–10 °С; к ним относится большинство сапрофитов, обитающих в почве, пресной и морской воде (например, морские светящиеся бактерии, некоторые железобактерии рода Galionella).

Высокая температура вызывает коагуляцию структурных белков и ферментов микроорганизмов. Большинство вегетативных форм гибнет при 60 °С в течение 30 мин, а при 80–100 °С — через 1 мин. Для сохранения жизнеспособности относительно благоприятны низкие температуры (например, ниже 0 °С), безвредные для большинства микробов. Бактерии выживают при температуре ниже –100 °С; споры бактерий и вирусы годами сохраняются в жидком азоте. Простейшие и некоторые бактерии (спирохеты, риккетсии и хламидии) менее устойчивы к температурным воздействиям.

Стерилизация. Температурные воздействия применяют для стерилизации — полного удаления микроорганизмов из различных сред и обеззараживания предметов. Разработано много режимов стерилизации; следует помнить, что термическая обработка применима лишь в отношении термоустойчивых материалов (стекло, металлы). Наиболее простые и доступные методы — прокаливание и кипячение.

Пастеризация. Метод позволяет эффективно уничтожать микроорганизмы инкубацией материала при 71,7 °С в течение 15 с с последующим быстрым охлаждением (быстрая пастеризация). Медленная пастеризация подразумевает более длительную экспозицию (30 мин) при 60 °C. Строго говоря, пастеризация — не стерилизующий метод, так как к ней чувствительны не все микроорганизмы. Метод широко применяют при обработке пищевых продуктов для профилактики кишечных инфекций, желудочно-кишечных форм туберкулёза и Ку-лихорадки.

Стерилизация сухим жаром. Проводят в сухожаровых шкафах при 160 °C в течение 2 ч; метод позволяет уничтожать не только вегетирующие клетки (погибают в течение нескольких минут), но и споры микроорганизмов (необходима экспозиция в течение 2 ч). Такие воздействия разрушают структуру большинства органических соединений и ведут к значительному испарению жидкостей (например, воды из питательных сред).

Автоклавирование (стерилизация текучим паром) включает обработку горячим паром (121 °C) под высоким давлением (1,2–1,5 атм); наиболее эффективно для стерилизации термостабильных жидкостей. Термоустойчивые споры микроорганизмов погибают в течение 15 мин. Обработка больших объёмов (более 500 мл) требует более длительной экспозиции. В лабораториях применяют специальные паровые котлы-автоклавы с горизонтальной или вертикальной загрузкой. Текучий пар нельзя применять для стерилизации сред, содержащих углеводы, молоко и желатина.

Тиндализация — метод дробной стерилизации при низких температурах — ежедневное прогревание сред при 56–58 °C в течение 5–6 сут. В результате такого дробного прогрева погибают вегетативные клетки бактерий, проросших из термостойких спор. Основной недостаток — невозможность полной элиминации микроорганизмов, так как некоторые споры не успевают прорастать во временн?х интервалах между сеансами прогревания, а некоторые вегетативные клетки успевают образовать термостабильные споры. Метод применяют для стерилизации сыворотки крови, асцитической жидкости и т.д.

Высушивание. При относительной влажности окружающей среды ниже 30% жизнедеятельность большинства бактерий прекращается. Время их отмирания при высушивании различна (например, холерный вибрион — за 2 сут, а микобактерии — за 90 дней). Поэтому высушивание не используют как метод элиминации микробов с субстратов. Неблагоприятное влияние высушивания на микроорганизмы применяют при консервировании сухих продуктов и изготовлении сухих концентратов пищевых продуктов. Широко распространено искусственное высушивание микроорганизмов, или лиофилизация. Метод включает быстрое замораживание с последующим высушиванием под низким давлением (сухая возгонка). Лиофильную сушку применяют для сохранения иммунобиологических препаратов (вакцин, сывороток), а также для консервирования и длительного сохранения культур микроорганизмов.

Излучение

Солнечный свет губительно действует на микроорганизмы, исключением являются фототрофные виды. При этом паразитические виды более чувствительны к облучению, чем сапрофиты. Спектр солнечной активности содержит неионизирующее (УФ- и инфракрасные лучи) и ионизирующее (например,?-лучи) излучение. Наибольший микробицидный эффект оказывает коротковолновые УФ-лучи. Энергию излучения используют для дезинфекции, а также для стерилизации термолабильных материалов.

УФ - лучи (в первую очередь коротковолновые, то есть с длиной волны 250–270 нм) действуют на нуклеиновые кислоты. Микробицидное действие основано на разрыве водородных связей и образовании в молекулах ДНК димеров тимина, приводящем к появлению нежизнеспособных мутантов. Применение УФ-излучения для стерилизации ограничено его низкой проникаемостью и высокой поглотительной активностью воды и стекла.

Рентгеновское и? - излучение в больших дозах также вызывает гибель микробов. Применяют для стерилизации бактериологических препаратов, изделий из пластмасс. Работа с источниками излучения требует строгого соблюдения правил безопасности. Облучение вызывает образование свободных радикалов, разрушающих нуклеиновые кислоты и белки с последующей гибелью микробных клеток.

Микроволновое излучение применяют для быстрой повторной стерилизации длительно хранящихся сред. Стерилизующий эффект достигается быстрым подъёмом температуры.

Осмотическое давление. Высокая внеклеточная концентрация сахаров и солей приводит к выходу воды из бактерий и простейших. Это свойство концентрированных растворов сахаров и поваренной соли применяют для консервирования пищевых продуктов. Чувствительность микроорганизмов к такому воздействию вариабельна (например, возбудитель ботулизма погибает в 6% растворе NaCl, а грибы рода Candida — в 14%). Вещества, повышающие осмотическое давление, не обеспечивают достоверной гибели всех микроорганизмов; сделанные на их основе консервы нельзя считать безопасными.

Фильтрование. Эффективный метод физического удаления микроорганизмов — фильтрование. Естественное обеззараживание почвенных вод осуществляется фильтрацией через пористые породы, задерживающие микробы. Для удаления микроорганизмов применяют различные природные (например, целлюлоза, каолин, инфузорная земля, асбест) и искусственные (мелкопористое стекло, фарфор) материалы; они обеспечивают эффективную элиминацию микроорганизмов из жидкостей и газов. Микробы адсорбируются на стенках пор фильтрующего материала. Фильтры имеют форму свечей (например, свечи ШамберлЊна), либо пластин, вкладываемых в фильтрующие устройства (аппарат ЗЌйтца) или специальные насадки. Фильтрацию применяют для стерилизации жидкостей, чувствительных к температурным воздействиям, разделения микробов и их метаболитов (экзотоксинов, ферментов), а также для выделения вирусов.

Химические факторы

Способность ряда химических веществ подавлять жизнедеятельность микроорганизмов и предотвращать порчу органических субстратов известна с глубокой древности. В частности, египтяне широко применяли кислоты, щёлочи, природные ароматические вещества для мумификации умерших; персы-огнепоклонники для предохранения дерева и кожи от гниения использовали нефть и её продукты. Применение химических веществ — основа метода антисептики (предложил Джозеф ЛЋстер в 1867 г.). Эффективность зависит от концентрации химических веществ и времени контакта с микробом. Химические вещества могут подавлять рост и размножение микроорганизмов, проявляя статический эффект, либо вызывать их гибель [ микробицидный эффект (от лат. caedo, убивать)]. Дезинфектанты и антисептики дают неспецифический микробицидный эффект; химиотерапевтические средства проявляют избирательное противомикробное действие.

Дезинфектанты и антисептики

Дезинфектанты — химические средства неспецифического действия, применяемые для обработки помещений, оборудования и различных предметов. Антисептики — вещества, используемые для обработки живых тканей. Дезинфицирующие средства оказывают в рабочих концентрациях бактерицидное действие, а антисептики (в зависимости от концентрации) — бактериостатическое или бактерицидное. Антисептики и дезинфектанты обычно легко растворимы в воде и действуют быстро; они дёшевы и при правильном применении не оказывают вредного воздействия на организм человека. Дезинфекция позволяет уменьшить число патогенных микроорганизмов на объектах внешней среды. Дезинфекцию проводят с определённой периодичностью (профилактическая дезинфекция), либо при возникновении инфекционного заболевания или подозрении на него (очаговая дезинфекция).

Спирты, или алкоголи (этанол, изопропанол и др.). Как антисептики, наиболее эффективны в виде 60–70% водных растворов. Спирты осаждают белки и вымывают из клеточной стенки липиды. При правильном применении эффективны в отношении вегетативных форм большинства бактерий; споры бактерий и грибов, а также вирусы к ним резистентны.

Галогены и галогенсодержащие препараты (препараты йода и хлора) широко применяют как дезинфектанты и антисептики. Препараты взаимодействуют с гидроксильными группами белков, нарушая их структуру.

• Как антисептики применяют йодсодержащие препараты — спиртовой раствор йода (5% в этаноле); йодинол (1% водный раствор содержит 0,1% йода, 0,3% калия йодида и 0,9% поливинилового спирта, замедляющего выделение йода); йодонат (водный раствор комплекса поверхностно-активного вещества с йодом); повидон-йод (комплекс йода с поливинилпирролидоном) и раствор ЛюгЏля применяют для обработки слизистых оболочек.

• Как дезинфектанты применяют хлорсодержащие препараты — газообразный хлор (взаимодействуя с водой, образует хлорноватистую кислоту; в присутствии органических веществ противомикробное действие уменьшается); хлорную известь (5,25% NaClO, также образующую при растворении хлорноватистую кислоту); хлорамин Б (содержит 25–29% активного хлора; для обеззараживания питьевой воды применяют в виде таблеток, содержащих 3 мг активного хлора); хлоргексидина биглюконат (гибитан).

Альдегиды алкилируют сульфгидрильные, карбоксильные и аминогруппы белков и других органических соединений, вызывая гибель микроорганизмов. Альдегиды широко применяют как консерванты. Наиболее известные — формальдегид (8%) и глутаральдегид (2–2,5%) — проявляют раздражающее действие (особенно пар?), ограничивающее их широкое применение.

Раствор формальдегида обладает дезинфицирующим и дезодорирующим эффектами. Применяют для мытья рук, дезинфекции инструментов, обработки кожи ног при повышенной потливости. Входит в состав препаратов (формидрон, мазь формалиновая). Мыльный раствор формальдегида (лизоформ) применяют для спринцеваний в гинекологической практике, для дезинфекции рук и помещений.

Уротропин (гексаметилентетрамин) в кислой среде организма расщепляется с выделением формальдегида; последний, выделяясь с мочой, оказывает антисептическое действие. Применяют при инфекционных процессах мочевыводящих и желчевыводящих путей, кожных заболеваниях. Входит в состав комбинированных препаратов (кальцекс, уробесал).

Циминаль, цимизоль и цидипол — антисептики, действующие за счёт образования формальдегида путём их гидролиза; применяют для индивидуальной профилактики венерических заболеваний у мужчин после случайных половых связей.

Кислоты и щёлочи применяют как антисептики. Среди кислот наиболее известны борная, бензойная, уксусная и салициловая. Применяют для лечения поражений, вызванных патогенными грибами и бактериями. Наиболее распространена салициловая кислота, применяемая в спиртовых растворах (1–2%), присыпках, мазях, пастах (например, для лечения дерматомикозов в областях, подверженных трению); оказывает также в зависимости от концентрации отвлекающее, раздражающее и кератолитическое действие. Из щелочей наиболее распространён раствор аммиака (нашатырный спирт содержит 9,5–10,5% аммиака), применяемый для обработки рук хирурга (0,5% раствор).

Металлы. Антимикробный эффект основан на способности осаждать белки и другие органические соединения. В качестве антисептиков широко применяют нитрат серебра (ляпис), сульфат меди (медный купорос) и хромат ртути (мербромин). Соединения металлов (особенно свинца, мышьяка и ртути) не рекомендуют применять для дезинфекции и антисептики, поскольку они способны накапливаться в организме человека. Исключение — сулема (ртути дихлорид), иногда применяемая для дезинфекции белья, одежды, предметов ухода за больными.

Фенолы и их замещённые производные широко применяют как дезинфектанты, в меньших концентрациях — в качестве антисептиков. Препараты денатурируют белки и нарушают структуру клеточной стенки. От применения собственно фенола отказались давно вследствие его токсичности, но его производные (например, гексахлорофен, резорцин, хлорофен, тимол, салол) применяют часто.

Катионные детергенты оказывают бактерицидное действие, связанное с изменением проницаемости ЦПМ. Их эффект уменьшают анионные поверхностно-активные вещества (по этой причине катионные детергенты несовместимы с мылами), низкие значения рН (то есть повышенная кислотность), некоторые органические соединения, ионы металлов. Катионные детергенты адсорбируются пористыми и волокнистыми материалами. При нанесении на кожу образуют плёнку, под которой могут оставаться живые микроорганизмы. Наиболее часто применяют для обработки рук хирурга (препараты циригель, дегмицид, роккал).

Газы как дезинфектанты известны с глубокой древности. Двуокись серы ещё в античности широко применяли для обработки складов и предохранения пищевых продуктов. Не менее широкое распространение получила дератизация двуокисью серы. Для уничтожения спор микроорганизмов при стерилизации предметов из пластмасс применяют окиси этилена и пропилена под давлением при 30–60 °C. Метод позволяет эффективно уничтожать большинство микроорганизмов, в том числе в тканях и жидкостях (кровь, гнойное отделяемое). Механизм действия связан со способностью окиси этилена алкилировать белки. В частности, повреждению подвергаются сульфгидрильные группы вегетативных форм и карбоксильные группы оболочек спор.

Красители. В качестве антисептиков давно применяют различные красители (например, бриллиантовый зелёный, метиленовый синий, риванол, оснЏвный фуксин).

Окислители. Механизм антимикробной активности связан с окислением метаболитов и ферментов микроорганизмов, либо денатурацией микробных белков. Наиболее распространённые окислители, применяемые как антисептики, — перекись водорода и перманганат калия (в просторечии, марганцовка).



Поделиться:


Последнее изменение этой страницы: 2016-09-20; просмотров: 309; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.58.141 (0.018 с.)