Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Линии напряженности. Поток вектораСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
НАПРЯЖЁННОСТИ ЭЛЕКТРИЧЕСКОГО ПОЛЯ. Для того, чтобы описать электрическое поле, нужно задать Е в каждой точке поля. Это можно сделать аналитически, выражая зависимость Е(х,у,z) в виде формул. Однако, это можно сделать и графически с помощью так называемых линий напряженности или силовых линий. Силовой линией, или линией вектора напряженности поля, называют линию, проведенную в электрическом поле, для которой направление касательной в любой точке совпадает с направлением вектора напряженности поля (рис.2) `E
Рис.2 `E
Т.к. касательная определяет два взаимно противоположных направления, то силовой линии приписывают определенное направление, отмечая его на чертеже стрелкой. Густота силовых линий на чертеже отражает величину напряженности поля, а именно, число силовых линий, проходящих через единицу поверхности, перпендикулярной к силовым линиям, равно (или пропорционально) величине напряженности поля в данном месте. Вследствие наглядности графический способ представления полей широко применяют в электротехнике. Из сказанного следует, что силовую линию можно провести через всякую точку поля. Далее, т.к. в каждой точке поля вектор напряженности имеет вполне определенное (одно!) положение, то силовые линии нигде не пересекаются. В качестве примера рассмотрим картину силовых линий точечного заряда. Для точечного заряда `E||`r и линии напряженности направлены по радиусам, проведённым из заряда. Для положительного заряда (q>0) эти линии исходят из заряда и уходят в ¥ (рис.3 а). Для отрицательного заряда (q<0) `E направлен против радиус-вектора `r, а линии напряженности идут из ¥ и сходятся в точке нахождения заряда (рис.3 б). Как видно из рисунка, густота линий убывает обратно пропорционально квадрату расстояния от заряда, т.е. так же, как и Рис.3. напряженность поля. Т.е. густота линий равна отношению полного числа линий N к величине поверхности сферы радиуса r, т.е. N/4pr2~1/r2. На рис.4 показано электрическое поле между двумя равными по величине точечными зарядами одинаковых и противоположных (рис.5) знаков, расположенными на расстоянии l друг от друга (диполь).
Рис.4. Рис.5. (Дипольный момент Р = q l).
Связь между электрическим полем и его источником может быть выражена достаточно просто. Для этого введём понятие потока вектора напряженности, которое используется при формулировке важнейших свойств электрического, магнитного и других векторных полей. Рассмотрим в пространстве некоторое электрическое поле и замкнутую поверхность произвольной формы. Разделим всю поверхность на столь малые части, что поверхность каждой части (элемента поверхности) можно считать практически плоской; на такой поверхности вектор напряженности электрического поля не будет заметно меняться. Направление элемента поверхности представим вектором нормали. За положительную нормаль к поверхности примем внешнюю нормаль, т.е. нормаль, направленную наружу. Способ разделения поверхности на элементы не имеет значения, пока элементы достаточно малы. Число силовых линий, равных скалярному произведению N = (`E×`n)dSi = Фi - называется потоком вектора напряженности через элемент поверхности dSi. Величина Ф может быть >0 и<0, т.к. нормаль может быть как положительной, так и отрицательной. Теперь сложим потоки через все элементы поверхности и получим поток через всю поверхность Ф = ò (`E×`n)dS =ò (En ×dS, где Еn - проекция `Е на направление нормали к площадке dS, где интеграл берется по поверхности S. Пусть Вас не пугает сложность вычисления таких интегралов для поверхностей сложной формы. Удивительное свойство, которое мы с вами сейчас рассмотрим, делает такие вычисления ненужными! Теорема Остроградского-Гаусса. 1). Возьмём наиболее простой случай: предположим, что поле создано изолированным положительным точечным зарядом q и что поверхностью является сфера радиуса r, в центре которой расположен точечный заряд (Риc. 6). Чему равен поток Ф через такую поверхность?
Рис.6. Ответить на этот вопрос легко, т.к. в каждой точке поверхности `E = (1/4pe0)(q/r3)`r, а поверхность сферы S=4pr2, тогда Ф = E×4pr2= (q/4pe0 r2) 4pr2=q/e0. Как мы видим из этой формулы, поток не зависит от размеров сферы. 2). Покажем теперь, что поток не зависит и от формы поверхности, Напомню, что линии напряженности электрического поля начинаются и заканчиваются только на электрических зарядах. Если замкнутая поверхность не охватывает заряда, то поток вектора электрического поля через эту поверхность равен нулю, т.к. число силовых линий, входящих в поверхность, равно числу выходящих из неё. 3). Пусть поле создается не одним точечным зарядом, а произвольной системой точечных зарядов q1, q2, q3…qn. По принципу суперпозиции напряжённость результирующего электростатического поля равна векторной сумме напряжённостей электростатических полей, создаваемых каждым из зарядов в отдельности: `E = `E1+`E2 +`E3 +…+`En = S`Ei. поэтому проекция вектора `Е на направление нормали к площади dS равна алгебраической сумме проекций всех векторов `Еi на это направление
Поток напряженности результирующего поля сквозь произвольную замкнутую поверхность S, охватывающую заряды q1, q2, …qk, и не охватывающую заряды qk+1…qm, равен , но Фi=0, если i>k поэтому ,т.е. поток вектора напряженности электростатического поля в вакууме сквозь произвольную замкнутую поверхность равен отношению алгебраической суммы зарядов, охватываемых этой поверхностью, к электрической постоянной. Это и есть теорема Оетроградского -Гаусса применительно к электростатическому полю в вакууме. Теорема Остроградского-Гаусса выведена нами как прямое следствие из закона Кулона. Она позволяет сравнительно просто рассчитывать электрические поля при симметричных распределениях зарядов и окружающих их диэлектриков. Для характеристики электрического поля наряду с `Е удобно ввести ещё одну векторную величину `D, называемую электрическим смещением или электрической индукцией. Для поля в электрически изотропной среде связь `D и `E в СИ имеет вид `D = ee0 `E Тогда к -теорема Остроградского-Гаусса.
|
||||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 770; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.193.221 (0.009 с.) |