ТОП 10:

ЗАКОН ПОЛНОГО ТОКА, ВИХРЕВОЙ ХАРАКТЕР МАГНИТНОГО ПОЛЯ



Ранее мы получили, что

= 0.

Это соотношение свидетельствует о том, что электростатическое поле является потенциальным.

Магнитное_поле в отличие от электростатического - непотенциальное поле: циркуляция вектора `В магнитной индукции поля вдоль замкнутого контура, вообще говоря, не равна нулю и зависит от выбора контура. Такое поле в векторном анализе называется вихревым полем.

Рассмотрим МП бесконечного прямолинейного проводника с током I, находящемся в вакууме. Линии магнитной индукции этого поля представляют собой окружности, плоскости которых перпендикулярны проводнику, а центры лежат на его оси. Найдем циркуляцию вектора `В вдоль произвольной линии магнитной индукции - окружности ра­диуса r.

. (1)

Вектор `В во всех точках линии численно равен

В = (m0/4p)2I/r - по закону Б.-С.-Л. (2)

и направлен по касательной к этой линии, так что соs(`В,d`l) = 1. Следовательно,

(m0/2p)(I/r) = m0I (3)

Из (3) можно сделать два вывода: а)МП прямолинейного тока - вихревое поле, т.е. в нем циркуляция вектора `В вдоль линии магнитной индукции не равна нулю;

б) циркуляция вектора `В магнитной индукции поля прямолинейного тока в вакууме одинакова вдоль всех линий магнитной индукции и равна произведению магнитной постоянной на силу тока.

Мы видим, что в (3) не входит зависимость от размеров или формы контура, а можно и доказать, что (3) справедлива для любого замкнутого контура, охватывающего про­водник, независимо от формы этого контура.

При выводе (3) считалось, что обход контура происходит по часовой стрелке, При противоположном направлении обхода контура вместо (3) получается

- m0I. (3')

Если в этом случае ток I считать отрицательным, то (3') эквивалентна (3). Поэтому в дальнейшем мы будем пользоваться (3), полагая в ней I>0, если направление тока в проводнике соответствует (по правилу буравчика) направлению обхода контура, и считая I<0 в противном случае.

Если замкнутый контур не охватывает проводника с током, тогда

0, (4).

т.е. циркуляция вектора магнитной индукции поля прямолинейного проводника с то­ком вдоль замкнутого контура, не охватывающего этого проводника, равна нулю.

Можно доказать, что (3) и (4) универсальны, т.е. справедливы для МП проводника с током любой формы и любых размеров, а не только для МП бесконечного прямолинейного проводника с током.

В общем случае, когда МП создается системой из n проводников с током I1,...In ,

, -закон полного тока для МП в вакууме.

где n- число проводников, охватываемых контуром.

Закон полного тока для МП в вакууме: циркуляция вдоль замкнутого контура вектора индукции МП в вакууме равна произведению магнитной постоянной на алг. сумму токов, охватываемых этим контуром.

 

 

ПОТОК ВЕКТОРА МАГНИТНОЙ ИНДУКЦИИ. ТЕОРЕМА ОСТРОГРАДСКОГО-ГАУССА.

Потоком вектора магнитной индукции или магнитным потоком сквозь малую пло­щадку dS называется физическая величина, равная произведению этой площадки и проекции Вn вектора`В на направление нормали `n к площадке dS:

dФ = ВndS = В dS соs(`В,`n) = `В ×d`S ,

где d`S = `n dS - вектор площадки dS. Интегрируя это выражение по S, получим

Ф= , (1)

где Ф - магнитный поток сквозь произвольную поверхность S.

При вычислении этого интеграла векторы `n нормалей к площадкам dS нужно направлять в одну и туже сторону по отношению к поверхности S. Например, если S -замкнутая поверхность, то векторы `n должны быть либо все внешними, либо все внутренними.

Если МП однородное, а S - плоская и S ^`В, то Вn =В = соnst и

Ф = BS. (2)

За единицу магнитного потока принимается магнитный поток сквозь плоскую по­верхность единичной площади, расположенную перпендикулярно однородному МП, индукция которого равна единице. Единица магнитного, потока в СИ называется вебером (Вб):

1Вб=1(В×с/м2)×1м2 = 1В×с,

В электродинамике доказывается следующая теорема Остроградского-Гаусса для МП: магнитный поток сквозь произвольную замкнутую поверхность равен нулю:

(3)

Эта теорема является математическим следствием отсутствия в природе магнитных «зарядов" на которых могли бы начинаться и заканчиваться линии магнитной индукции.

 

 

СВЕТОВЫЕ ВОЛНЫ

Свет представляет собой сложное явление: в одних случаях он ведет себя как электромагнитная волна, в других - как поток особых частиц (фотонов). Длительный путь развития учения о свете привел к современным представлениям о двойственной корпускулярно-волновой природе света. Мы с Вами вначале рассмотрим круг явлений, в основе которых лежит волновая природа света.

Теоретические исследования Максвелла о распространении электромагнитных волн, экспериментальные измерения скорости их распространения в пустоте, оказавшейся равной скорости распространения света в пустоте, и другие исследования позволили выдвинуть предположение о чисто электромагнитной природе света.

Электромагнитная теория светаявилась существенным шагом вперед в понимании природы оптических явлений. Свет оказался частным случаем электромагнитных волн с длиной волны от l = 400 нм (фиолетовый) до l=7бО нм (красный). Только этот интервал длин электромагнитных волн оказывает непосредственное воздействие на наш глаз и является собственно светом. Однако и более коротковолновое (l<400 нм -ультрафиолетовое) и более длинноволновое излучение (l>760 нм -инфракрасное) имеют качественно одну и ту же электромагнитную природу и отличаются лишь методами их возбуждения и обнаружения.

В электромагнитной волне колеблются векторы `Е и `Н, причем `Е^`Н (рис.1). Как показывает опыт, физиологическое, фотохимическое, фотоэлектрическое и другие действия света вызываются колебаниями вектора напряженности электрического поля `Е, о котором говорят поэтому как о световом векторе.О магнитном векторе `Н световой волны мы упоминать почти не будем.

 

 

Рис.1. Взаимное расположение векторов `Е и `Н в световой волне.

 

Модуль амплитуды светового вектора мы будем обозначать А (иногда Ем). Соответственно изменение во времени и пространстве проекции светового вектора на направление, вдоль которого он колеблется, будет описываться уравнением

Е = Асоs(wt – kr + a) – уравнение световой волны (1)

 

где k - волновое число (k = 2pl), r- расстояние, отсчитываемое вдоль направления распространения световой волны. Для плоской световой волны, распространяющейся в непоглощающей среде, А = const, для сферической волны А убывает как 1/r и т.д.

Отношение скорости распространения световой волны в вакууме (с) к ее скорости в некоторой среде V называется абсолютным показателем преломленияэтой среды и обозначается буквой n. Таким образом,

n = с/ V. (2)

 

Из электромагнитной теории следует, что n = Öem, где e и m - диэлектрическая и магнитная проницаемости среды. Для подавляющего большинства прозрачных веществ m практически не отличается от единицы. Поэтому можно считать, что n = Öe. Эта формула связывает оптические и электрические свойства вещества. В эту формулу надо подставлять e, полученное для соответствующей частоты, так как n зависит от частоты (длины волны) света.

Значения показателя преломления характеризуют оптическую плотность cреды. Среда с большим n называется оптически более плотной, чем cреда с меньшим n, и наоборот.

Как уже отмечалось, длины волн видимого света l = 400 - 760 нм. Эти значения относятся к световым волнам в вакууме, В веществе длины световых волн будут иными. В случае колебаний частоты n длина волны в вакууме равна l0 = c/n. В среде, в которой фазовая скорость световой волны V = с/n, длина волны имеет значение

l = Vn = c/nn =l0/n.

Т.о. длина световой волны в среде с показателем преломления n связана с длиной волны в вакууме соотношением

l = l0 n.

Частоты видимых световых волн лежат в пределах

n = (3,9-: 7,5) 1014 Гц.

Частота изменений плотности потока энергии, переносимой волной, будет еще больше (она равна 2n). Уследить за столь быстрыми изменениями потока энергии не могут ни глаз, ни приборы, вследствие чего они регистрируют усредненный по времени поток.

Модуль среднего по времени значения плотности потока энергии, переносимой световой волной носит название интенсивности света Iв данной точке пространства. Плотность потока электромагнитной энергии определяется вектором Пойтинга S. Следовательно,

 

I=|<S>|= |<[ЕН]>|.

Измеряется интенсивность либо в энергетических единицах (Вт/м2), либо в световых единицах, носящих название (лм/м2). Поскольку для электромагнитной волны напряженность Е ~ Н, тогда

I~А2.

Линии, вдоль которых распространяется световая энергия, называются лучами. Усредненный вектор Пойтинга <S> направлен в каждой точке по касательной к лучу. В изотропных средах это направление совпадает с нормалью к волновой поверхности, т.е. с направлением волнового вектора `k. Модуль ê`kê = k – волновое число.

Несмотря на то, что световые волны поперечны, они не обнаруживают асимметрии относительно луча. Это обусловлено тем, что в естественном свете имеются колебания, совершающиеся в самых различных направлениях, перпендикулярных к лучу, рис.1а. Излучение светящегося тела слагается из волн, испускаемых его атомами, которые (волны), налагаясь друг на друга, образуют испускаемую телом световую волну. В результирующей волне колебания различных направлений представлены с равной вероятностью.

Луч света

 

 
 

 


Рис.1а. Колебания вектора `Е в световой волне естественного света.

 

В естественном свете колебания различных направлений быстро и беспорядочно сменяют друг друга. Свет, в котором направления колебаний упорядочены каким-либо образом, называется поляризованным. Если колебания светового вектора происходят только в одной проходящей через луч плоскости, свет называется плоско- (или линейно-) поляризованным. Упорядоченность может заключаться в том, что вектор `Е поворачивается вокруг луча, одновременно пульсируя по величине. В результате конец вектора Ё описывает эллипс. Такой свет называется эллиптически - поляризованным. Если конец вектора Ё описывает окружность, свет называется поляризованным по кругу.







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.204.193.85 (0.009 с.)