Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Волна, ее характеристики. Продольные и поперечные волны.

Поиск

Если в упругую среду поместить колеблющееся тело (источник колебаний), то соседние с ним частицы среды тоже придут в колебательное движение. Колебание этих частиц передается (силами упругости) соседним частицам среды и т.д. Через некоторое время колебание охватит всю среду. Однако, оно будет совершаться с различными фазами: чем дальше расположена частица от источника колебаний, тем позднее она начнет колебаться и тем больше будет запаздывать по фазе ее колебание. Распространение колебаний в среде наз. волновым процессом или волной. Пример: сейсмические волны, волны на воде. Направление распространения волны (колебания) называется лучом.

Волна называется поперечной, если частицы среды колеблются перпендикулярно лучу. Если же они колеблются вдоль луча, то волна называется продольной.

Продольные волны могут возникнуть в среде обладающей упругостью объема, т.е. в твердых телах, жидкостях и газообразных телах. Поперечные волны возникают только в среде, обладающей упругостью формы (деформацией сдвига), т.е. только в твердых телах. Исключение составляют волны на поверхности воды.

Основные закономерности волнового процесса справедливы не только для механических волн упругой среды, но и для волн любой природы, в частности для волн электромагнитного поля.

 

УРАВНЕНИЕ ВОЛНЫ. ИНТЕНСИВНОСТЬ ВОЛНЫ.

 

Пусть колебания источника О гармонические, т.е. х = Аsin wt.

Тогда все частицы среды тоже придут в гармоническое колебание с той же частотой и амплитудой, но с различными фазами. В среде возникнет синусоидальная волна.

График волны внешне похож на график гармонического колебания, но по существу они различны. График колебания – зависимость смещения данной частицы от времени, график волны – смещение всех частиц среды от расстояния до источника колебаний в данный момент времени. Он является как бы моментальной фотографией волны.

Получим уравнение волны. Рассмотрим некоторую частицу С. Очевидно, что если частица О колеблется уже t сек., то частица С колеблется еще только (t – t)cек., где t - время распространения колебаний от О до С. Тогда уравнение колебания для С будет

Х = Аsinw(t – t), но t =y/ V,

где V -cкорость распространения волны.

Тогда Х = Аsinw(t – y/ V) – уравнение волны (1)

Учитывая, что длина волны l = V T = V /n, откуда V = l/T, w = 2p/T =2pn получим

Х = Аsin2p(t/T – y/l) = Asin2p(nt –y/l) = Asin(wt -2py/l),

где к = 2p/l -волновое число. Если поменять оси координат, то

y(x,t) = Asin(wt ± kx). Знак (+) указывает противоположное направление распространения.

Расстояние, на которое распространяется колебание за один период, называется длиной волны.

Скорость распространения волнового движения является скоростью распространения фазы (фазовая скорость). В однородной среде скорость постоянна. При переходе из одной среды в другую меняется скорость распространения волн, ибо меняются упругие свойства среды, однако частота колебаний, как показывает опыт, остается неизменной. Это значит, что при переходе из одной среды в другую будет меняться l.

Если мы возбудили колебания в какой-либо точке среды, то колебания передадутся всем окружающим ее точкам, т.е. колебаться будет совокупность частиц, заключенных в некотором объеме. Распространяясь от источников колебаний волновой процесс охватывает все новые и новые части пространства. Геометрическое место точек, до которых доходят колебания к некоторому моменту времени t, наз. фронтом волны.

Т.о., фронт волны является той поверхностью, которая отделяет часть пространства, уже вовлеченную в волновой процесс, от области, в которой колебания еще не возникли. Геометрическое место точек, колеблющихся в одинаковой фазе, наз. волновой поверхностью. Волновые поверхности могут быть различной формы. Простейшие из них имеют форму сферы или плоскости. Волны, имеющие такие поверхности, называются соответственно сферическими или плоскими.

Часто при решении задач о распространении волн надо строить волновой фронт для некоторого момента времени по волновому фронту, заданному для начального момента времени. Это можно сделать используя принцип Гюйгенса, сущность которого в следующем:

Пусть волновой фронт, перемещающийся в однородной среде, занимает в данный момент времени положение 1, рис. 2.

Dy

       
 
   
 
 
 
 
 
   
 
 
 

 

 


1 2

 

Рис.2

Требуется найти его положение через промежуток времени Dt. Согласно Гюйгенсу, каждая точка среды, до которой дошла волна, сама становится источником вторичных волн (первое положение).

Это значит, что от нее, как из центра, начинает распространяться сферическая волна. Чтобы построить вторичные волны, вокруг каждой точки исходного фронта опишем сферы радиусом

Dy = V Dt, где V – скорость волны.

Вторичные волны взаимно гасятся во всех направлениях, кроме направлений исходного фронта ( второе положение принципа Гюйгенса).

Иными словами, колебания сохраняются только на внешней огибающей вторичных волн. Построив эту огибающую, получим исходное положение 2 волнового фронта.

Принцип Гюйгенса применим и к неоднородной среде. В этом случае значения V, а следовательно и Dy неодинаковы в различных направлениях.

Т.к. прохождение волны сопровождается колебанием частиц среды, то вместе с волной перемещается в пространстве и энергия колебаний.

Интенсивностью волны или плотностью потока энергии наз. отношение энергии, переносимой волною сквозь площадь, перпендикулярную лучу, к продолжительности времени переноса и размеру площади.

Получим выражение для интенсивности волны.

Пусть в 1 см3 среды содержится n0 частиц массой m. Тогда энергия колебания среды в единице объема равна

Е = n0mw2A2/2 = rw2A2/2, где r =n0m.

Очевидно, за 1с сквозь площадку в 1 см2 переносится энергия, содержащаяся в объеме прямоугольного параллелепипеда с основанием 1 см2 и высотой, равной V, следовательно интенсивность

I =E V = r V w2A2/2.

Т.о., интенсивность волны пропорциональна плотности среды и скорости, квадрату круговой частоты и квадрату амплитуды волны.

 

Стоячие волны.

 

Часто приходится наблюдать взаимное наложение волн, при этом частицы среды участвуют сразу в нескольких волновых движениях. Опыт показывает, что в этом случае смещение каждой частицы среды является суммой ее смещений, соответствующим всем налагающимся волнам. Явление наложения называется сложением волн. Одним из важнейших примеров такого сложения служит наложение двух плоских волн, бегущих в противоположных направлениях с одинаковой амплитудой. В этом случае результирующее смещение определяется формулой

Y(x,t) = Asin(wt – kx) + Asin(wt + kx) = 2Asin wt coskx = B(x) sinwt.

 

Такое сложение мы можем наблюдать при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная, накладываясь друг на друга, дают результирующее колебание, называемое стоячей волной.

Из уравнения стоячей волны видно, что в каждой точке этой волны происходят колебания той же частоты, что и у встречных волн, причем амплитуда В зависит от координаты х:

В(х) = 2А cos kx = 2Acos2px/l.

В тех точках, где 2px/l = np (n = 0,1,2,...), амплитуда В достигает максимума, равного 2А. Эти точки наз. пучностями стоячей волны.

Координата пучности равна хn = ±nl/2. В точках, где 2pх/l = ±(n+1/2)p, амплитуда В обращается в нуль. Эти точки называются узлами стоячей волны. Точки среды, находящиеся в узлах, колебаний не совершают. Координаты узлов равны

Xy = ±(n ± ½)l/2.

Из формул для координат узлов и пучностей следует, что расстояние между соседними узлами (так же как и соседними пучностями) равно l/2.

 

ЗВУК.

Воспринимаемый человеком звук также представляет собой волновое движение, которое возникает в окружающей нас среде. Источником звука всегда служит какое – либо колеблющееся тело. Это тело приводит в движение окружающий воздух, в котором начинают распространяться продольные упругие волны. Когда эти волны достигают уха, они заставляют колебаться барабанную перепонку, и мы ощущаем звук. Механические волны, действие которых на ухо вызывает ощущение звука, называются звуковыми. Человек воспринимает f =20–16000Гц. f < 20 Гц – инфразвук, f > 16кГц – ультразвук.

(Горы, лавины, сели! Инфразвук ® страх).

Упругие волны могут распространяться только в среде, где существует связь между отдельными частицами этой среды, поэтому в вакууме звук распространяться не может. В воздухе V =330 м/с.

Для того чтобы вызвать звуковое ощущение, волна должна обладать некоторой минимальной интенсивностью, которая называется

порогом слышимости. Он бывает различен для разных людей и сильно зависит от f. Человеческое ухо наиболее чувствительно к f = 1000 – 4000 Гц. В этой области частот I0 = 10-16 Вт.

Звук очень большой интенсивности тоже не вызывает слухового ощущения, а создает лишь ощущение боли и давления в ухе. Минимальное значение интенсивности звука, превышение корого вызывает болевое ощущение, наз. болевым порогом. Значения различных порогов различны для различных частот, рис.1.

I0

Болевой порог

Область слышимости

 

 

Рис.1. Порог слышимости

f

Первое различимое качество звука – это громкость. Изменение громкости звука вызывается изменением амплитуды колебаний. Происходит это потому, что энергия, переносимая волной, пропорциональна квадрату амплитуды (Е ~ А2).

Вторым качеством звука является высота его тона. Звук, соответствующий строго определенной частоте колебаний, наз. тоном. Чем больше частота звука, тем более высоким является тон. Получить звуки различных тонов можно с помощью камертона.

Третьим качеством звука является его тембр. В жизни мы часто узнаем знакомого человека по голосу, еще не видя его. Мы легко отличаем звуки скрипки от звуков рояля, хотя они могут быть одного тона. Качество звука, позволяющее определить источник его образовавния, наз. тембром. Тембр различных источников звука не одинаков. Объясняется это образованием дополнительных стоячих волн в самом источнике звука, которые дают дополнительные тона. Дополнительные тона источника звука, более высокие, чем основной тон, называются высшими гармоническими тонами или обертонами.

Каждый источник звука имеет определенное число обертонов. Они и придают звуку свой характерный оттенок – тембр.

Шум отличается от музыкального звука лишь тем, что в нем присутствуют колебания всевозможных частот с разными амплитудами.

На границе раздела двух сред звуковые волны претерпевают частичное или полное отражение. Возвращение звуковой волны после отражения наз. эхом. Явление отражения звуковых волн широко используется в акустике. Сравнительно слабое затухание ультразвуковых волн в воде позволило использовать их в целях гидролокации – обнаружении предметов и определении расстояний от источника звука до предметов. Гидролокатор (эхолот) – измеряет глубину и рельеф морского дна, расстояние до айсберга, косяков рыбы и т.д. Примеры: pобототехника, УЗИ.

 

t = 2 l /V, откуда l = tV/2. l

 

 
 


импульсный

источник ультразвука

 

 

ЭЛЕМЕНТЫ МЕХАНИКИ ЖИДКОСТЕЙ. ОСНОВНЫЕ ОПРЕДЕЛЕНИЯ. УРАВНЕНИЕ НЕРАЗРЫВНОСТИ.

В отличие от твердого тела в жидкости и газе возможны значительные смещения составляющих их частиц относительно друг друга. Поэтому жидкости и газы не имеют собственной формы и всегда принимают форму сосуда, в котором они содержатся. Под действием сколь угодно малых сил они будут изменять свою форму, пока действуют силы. Следовательно, жидкости и газы не обладают упругостью по отношению к деформациям, вызывающим изменение формы без изменения объема. Но жидкости и газы обладают упругостью по отношению к деформации сжатия, т.к. для изменения их объема на конечную величину к ним необходимо приложить конечные силы тем большие по величине, чем больше их сжатие. В жидкостях и газах, как и в твердых телах, при их сжатии возникают силы, препятствующие сжатию, причем величина их возрастает с возрастанием величины деформации сжатия. Эти силы, подобно упругим, уравновешивают деформирующие силы. Однако сжимаемость жидкости мала и в движущейся жидкости, если V ж < V звука, ею можно пренебречь. Рассматриваем 1) жидкость несжимаемую, для воды Dr ®1% при DР = 200 атм.

Реальная жидкость вязкая. Если силы внутреннего трения малы по сравнению с другими действующими в ней силами (давление, тяжести и т.д.), то жидкость можно считать практически не вязкой. Воображаемая жидкость, совершенно не обладающая вязкостью, наз. идеальной. 2) Рассматриваем идеальную жидкость. В этих случаях потери энергии движения на трение и переход в тепло незначительны, и поэтому можно применять закон сохранения энергии в чисто механической форме.

Изучая движение жидкости необязательно следить за движением каждой ее частицы. Движение жидкости будет известно, если в каждой точке той области пространства, где течет жидкость, задан вектор скорости проходящих через нее частиц жидкости как функция времени. Такое поле скоростей, т.е. область пространства, каждой точке которой поставлен в соответствие вектор скорости частиц жидкости, проходящей через нее в различные моменты времени, наз. потоком жидкости. В тот или иной момент времени скорости в разных точках потока жидкости различны по величине и по направлению и, кроме того, могут изменяться во времени.

Если ни в одной из точек потока скорость с течением времени не изменяется, то поток наз. стационарным. Но в разных точках стационарного потока скорости могут быть различными. В стационарном потоке жидкости все частицы проходят в разные моменты времени через ту или иную его точку с одинаковой скоростью, хотя скорости частиц при переходе от одной точки потока к другой изменяются.

Для наглядной характеристики потока жидкости пользуются так наз. линиями тока. Это такие линии, касательные к которым в каждой их точке параллельны скоростям частиц, проходящих в данный момент времени через эти точки потока.

Движение жидкости наз. установившимся (стационар-ным), если скорость жидкости в каждой точке объема не изменяется с течением времени. 3) Рассматриваем движение жидкости установившееся. В этом случае линии тока также остаются неизменными и частица жидкости, находясь в данный момент времени на некоторой линии тока, все время остается на этой линии тока. При стационарном движении траектории частиц жидкости совпадают с линиями тока. Установившееся (стационарное) движение жидкости имеет место в тех случаях, когда силы, вызывающие движение, не изменяются во времени. Если поток нестационарен, то линии тока не совпадают с траекториями частиц жидкости.

Линии тока нигде не могут пересекаться одна с другой, т. к. в той или иной точке потока в данный момент времени может находиться только одна частица жидкости, обладающая определенной скоростью.

Часть потока, ограниченная боковой поверхностью, образованной линиями тока, наз. трубкой тока. В стационарном потоке жидкости любая трубка тока не изменяется с течением времени. Кроме того, если поток стационарен, то внутри данной трубки тока все время движутся одни и те же частицы жидкости. Жидкость в данном случае не может ни входить в трубку тока, ни выходить из нее через боковую поверхность, т.к. скорости частиц, движущихся непосредственно у боковой поверхности трубки, направлены по касательной к ней и не имеют составляющих, перпендикулярных ей. Линии же тока, проходящие внутри и вне трубки, не пересекают линий, образующих ее боковую поверхность.

В различных участках стационарного потока идеальной жидкости скорости ее частиц неодинаковы. Действительно, пусть идеальная несжимаемая жидкость течет по трубе с изменяющимся вдоль ее длины поперечным сечением.

S1 S1' S2

`V1 `V2 S2¢

                   
         
 
 
 


`F1 `F2

           
   
   


V1Dt V2Dt

       
   


h1 h2

 

 
 

 

 


Рис.1.

Выберем в трубе тока два поперечных сечения: S1, где скорость течения жидкости ` V 1 и S2 c ` V 2. Т.к. жидкость не сжимается, не разрывается и не проходит через боковую поверхность трубки, то за время Dt через эти сечения пройдут одинаковые объемы, а следовательно, и одинаковые массы Dm жидкости. Объем жидкости, протекающей через широкое сечение, имеет форму цилиндра с основанием S1 и высотой V 1Dt; он равен S1 V 1Dt. Точно так же через S2 имеем S2 V 2Dt. Тогда S1 V 1 = S2 V 2. Т.к. сечения выбраны произвольно, то

 

S V = const - уравнение неразрывности струи.



Поделиться:


Последнее изменение этой страницы: 2016-08-01; просмотров: 1500; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.12.154.172 (0.009 с.)