Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Пошук початкового опорного розв’язку. Метод штучного базисуСодержание книги
Поиск на нашем сайте
Для того, щоби застосувати симплекс – метод до задачі лінійного програмування у канонічній формі, необхідно спочатку знайти деякий початковий допустимий опорний розв’язок. У попередньому прикладі це було досягнуто завдяки безпосередньому розповсюдженню симплекс – метода (метода жорданових перетворень). Розглянемо це більш докладно на прикладі задачі про раціон, математична модель якої отримана у §1: f = 20х1 + 30х2 (min) . Ввівши нові змінні х3, х4 і змінивши знаки коефіцієнтів у цільової функції, зведемо цю модель до канонічної: f ´ = – 20х1 – 30х2 (mах) . Запишемо її у електронну симплекс – таблицю:
Ця симплекс – таблиця не приведена до початкового опорного розв’язку. Проте будемо діяти у відповідності з симплекс – методом. Змінні x3, x4 не можна безпосередньо використати у якості основних, оскільки тоді їх значення будуть від’ємними, а відповідні розв’язки не допустимими. Спробуємо x1 у якості основної. Щоби знайти ведучий елемент у стовпці А перевіримо умову допустимості.
Отже, виокремимо нову симплекс – таблицю в діапазоні А6: F8. Надамо чарункам електронної таблиці таких значень:
Звичайно, спочатку діємо у рядку 7, а потім у решті. В результаті дістанемо:
У якості другої основної змінної спробуємо x2. Щоби знайти ведучий елемент у стовпці В перевіримо умову допустимості.
Нам пощастило: ведучий елемент виявився саме на необхідному місці. Якщо б замість 3,666667 значення у чарунці В6 дорівнювало скажімо 0,1, то нам залишилося б замість x2 спробувати якусь іншу змінну. Тепер виконаємо чергове жорданове перетворення з ведучим елементом у В6:
Нарешті симплекс – таблиця виявляється приведеною до базису А1, А2 опорного розв’язку. Всі оцінки не додатні. Згідно з теоремою 1 це означає, що розв’язок є оптимальним, на цьому симплекс – метод припиняє роботу. Значення цільової функції із зміненими коефіцієнтами f ´ = – 27,27273, отже f = 27,27273. Разом з тим зауважимо, що оцінка δ3 = 0, отже цільова функція, виражена через вільні змінні х4, х3 має вигляд f ´ = 27,27 – 5,45х4. Тому, якщо обрати за нову основну змінну х3, то хоча її значення і стане додатним замість нульового, але значення цільової функції f ´ не зміниться і ми дістанемо новий оптимальний опорний розв’язок. Отже, виконаємо жорданове перетворення ще раз. У стовпці С додатним є лише значення у чарунці С11, тому вона і є ведучим елементом. В результаті дістанемо:
Отже, існують принаймні два різних оптимальних опорних розв’язка, а тому існує нескінченна множина оптимальних розв’язків даної задачі – всі точки на відрізку між цими опорними розв’язками. Загалом процес перетворень виглядає так:
Звичайно, застосований тут метод не є ефективним алгоритмом пошуку початкового опорного розв’язку. Фактично ми просто пробували деякі пари змінних у якості основних і такий процес перебору може тривати дуже довго. Справжнім ефективним алгоритмом є наступний метод штучного базису. Розглянемо задачу лінійного програмування у канонічній формі (3): f = (max) = bi (i = 1, 2, …, m) xj ≥ 0 (j = 1, 2, …, n).
Як і завжди, вважаємо, що всі bi ≥ 0. Для пошуку початкового опорного розв’язку побудуємо допоміжну задачу g = (min) + yi = bi (i = 1, 2, …, m) xj ≥ 0 (j = 1, 2, …, n), yi ≥ 0 (i = 1, 2, …, m). (4)
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-23; просмотров: 334; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.192.2 (0.006 с.) |