Равномерное вращательное движение. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Равномерное вращательное движение.



Скорость принципиально не может изменяться только по направлению без преобразования её абсолютной величины в новом направлении. При любом внешнем воздействии, осуществляющемся под любым не равным нулю углом к направлению прежнего движения, в том числе и под прямым углом, который не является каким–либо исключением из этого правила, изменяется не только направление скорости результирующего движения, но и ее величина. Поэтому совершенно очевидно, что в равномерном вращательном движении существует механизм, как изменения скорости по направлению, так и по величине.

В классической модели равномерного вращательного движения радиальное движение отсутствует, даже, несмотря на действие вполне реальной центростремительной силы. При этом окружное линейное движение осуществляется с постоянной линейной скоростью. Это означает, что ускоренное перемещение в пространстве в равномерном вращательном движении отсутствует, как в тангенциальном, так и в нормальном направлении. Следовательно, по всем законам классической же физики все силы в равномерном вращательном движении уравновешены во всех направлениях, а полное абсолютное ускорение равно нулю!

Под каким бы углом к вектору скорости тела ни была бы направлена постоянная по абсолютной величине неуравновешенная сила, тело в соответствии со вторым законом Ньютона не может не испытывать ускоренного движения в направлении её действия. Следовательно, в нормальном направлении к линейной скорости равномерного вращательного движения со временем должен образоваться нормальный вектор скорости, изменяющийся по абсолютной величине с нормальным ускорением. Но по правилам векторной геометрии это непременно должно привести к изменению результирующего вектора этих скоростей не только по направлению, но и по абсолютной величине.

Кроме того, даже если допустить, что центростремительное ускорение изменяет скорость только по направлению, то в соответствии со вторым законом Ньютона такое ускоренное изменение направления вектора скорости должно изменяться именно ускоренно. Однако, как это ни удивительно для самого понятия «ускорение», но в равномерном вращательном движении вектор линейной скорости изменяется по направлению не ускоренно, как это должно быть по определению понятия «ускорение», а равномерно! Следовательно, либо второй закон Ньютона на вращательное движение не распространяется, чего не может быть в принципе, либо центростремительному ускорению в равномерном вращательном движении что–то реально противодействует. И это «что–то» вовсе не фиктивное (см. гл. 3).

Носителем или источником фиктивных центробежных сил инерции, которые являются реальными обычными силами для связующего тела, является само вращающееся тело, хотя бы потому, что никаких других тел, кроме вращающегося тела рядом со связующим телом просто нет. Но как может источник и носитель этих сил производить и носить несуществующие для него самого силы?! Особенно, если связующее и вращающееся тело представляют собой единое тело, выполненное, например, из одного цельного куска какого–либо материала.

Каким образом реальные силы со стороны вращающегося тела, которые растягивают связующее тело, реально преодолевая его силу упругости, перестают вдруг действовать на само вращающееся тело? Как они узнают, где кончается связующее тело и начинается вращающееся тело? Кто даёт им сигнал, в каком месте единого тела им пора превращаться из обычных сил для связующего тела в фиктивные силы инерции для вращающегося тела? Если обычные реальные силы действуют на одну неотъемлемую часть тела, сделанного из единого куска материала под названием связующее тело, то они должны действовать и на все его остальные части, т.е. и на само вращающееся тело этого же куска материала!

Иначе следует считать, что классическая физика преподносит нам законы колдовства, а вовсе не физики!

                                      

Произвольное движение.

Центростремительное ускорение является природным измерительным эталоном (калибром) ускорения точки на траектории произвольного криволинейного движения. С любым участком произвольного криволинейного движения можно сопоставить дугу окружности равномерного вращательного движения, динамические и кинематические параметры которого будут мало, чем отличаться от усреднённых параметров этого участка. При этом центростремительное ускорение этого вписанного вращения будет достоверно отражать ускорение произвольного криволинейного движения и на этом участке. Вопрос только в точности этого сопоставления, который легко решается с уменьшением величины сопоставляемых участков.

При этом:

1. Классическая теорема о проекции ускорения точки на нормаль и на касательную к траектории противоречит классической теореме Кориолиса о сложении ускорений. Обе теоремы неверны.

2. Классическая теорема о полном геометрическом равенстве скорости соответственной точки годографа и полного ускорения точки неверна, т.к. полное ускорение точки вовсе не то ускорение, за которое его выдаёт классическая физика.

3. Классическое определение годографа закрепляет за ним несуществующие у него качества. В реальной действительности физический смысл годографа не привязан к началу координат, как значится в его классическом определении.

4.Усреднённое ускорение на участке криволинейной траектории конечной малости, на котором и теоретически, и практически определяется мгновенное ускорение, является центростремительным ускорением, т.к. постоянные усреднённые геометрические и динамические параметры криволинейного движения являются параметрами равномерного вращательного движения.



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 78; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.130.24 (0.006 с.)