Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Явление Кориолиса – физический смысл.

Поиск

Густав Гаспар Кориолис (1792–1843 гг.) – французский математик и механик открыл силу инерции, названную впоследствии его именем. Она возникает в неинерциальной вращающейся системе отсчета. Он также вывел ее формулу.

Сила Кориолиса равна удвоенной радиальной скорости (V р), умноженной на угловую скорость вращения (ω) и умноженную на синус угла между ними, а так же на испытуемую массу (M).

В классической физике описаны два варианта проявления силы и ускорения Кориолиса.

В первом варианте относительная скорость направлена вдоль радиуса вращающейся системы. Здесь действительно проявляется достаточно выраженное явление, которое в классической физике ассоциируют с ускорением Кориолиса. Однако за силу и ускорение Кориолиса фактически принимается противо реакция на обычную тангенциальную силу, которая поддерживает угловую скорость переносного вращения. Поддерживающая сила — это либо сила, действующая на движущееся радиально тело со стороны вращающихся масс системы, которые не изменяют своего радиального положения, либо любая внешняя сила, которая поддерживает переносную угловую скорость на постоянном уровне.

В отсутствие поддерживающей силы происходит естественное уменьшение угловой скорости при радиальном движении от центра вращения и естественное увеличение угловой скорости при радиальном движении к центру вращения. Это явление в классической физике называется законом сохранения углового момента, который якобы выполняется в отсутствие тангенциальных сил. Однако в реальной действительности угловой момент сохраняется именно за счёт тангенциальной составляющей радиальной силы. Это и есть основа явления Кориолиса. Поэтому тангенциальную составляющую радиальной силы мы называем истинной силой Кориолиса–Кеплера.

Проявляясь совместно с «обычной» истинной силой Кориолиса, фиктивная сила инерции Кориолиса одновременно противоречит, как физическому смыслу обычных сил, так и фиктивных сил инерции. Поскольку в классической динамике вращательного движения понятие об обычной истинной силе Кориолиса–Кеплера отсутствует, то в классической физике родилась самая странная сила не только из всех сил инерции, но и самая странная из всех обычных сил!!!

Классическая сила Кориолиса — это либо, полу фиктивная обычная сила, либо, полу обычная фиктивная сила. Недаром физики всех народов, начиная со времён Кориолиса, и до сих пор спорят, реальна ли сила Кориолиса или же это только иллюзорная сила инерции.

Поскольку истинная сила Кориолиса–Кеплера в классической модели явления Кориолиса полностью скомпенсирована, то реальное ускорение и сила Кориолиса вдвое меньше классического ускорения и силы Кориолиса. При этом классической силе Кориолиса соответствует только общее силовое напряжение, возникающее при противодействии поддерживающей силы и истинной силы Кориолиса–Кеплера.

Во втором варианте относительная скорость направлена перпендикулярно постоянному радиусу вращающейся системы. При этом абсолютная линейная скорость является величиной постоянной. Но это есть не что иное, как равномерное вращательное движение, динамику которого с классической же точки зрения определяет исключительно только центростремительное ускорение. Следовательно, либо никакого ускорения Кориолиса при тангенциальном относительном движении нет, либо классической физике следует пересмотреть свои взгляды, как на явление Кориолиса, так и на классическую модель вращательного движения.

Явление Кориолиса – Кеплера играет очень важную роль в природе. Например, А. И. Андреев в работе «Основы естественной энергетики», Санкт–Петербург, 2004, г. на стр. 181 пишет:

 «Поскольку образование и существование вихрей элементарных частиц и гравитации происходит за счёт кориолисовых сил и самовращения, то кориолисово самовращение, именно в этом смысле является основой природы».

В реальной действительности никакого самовращения вихрей за счёт силы Кориолиса нет, и не может быть в принципе. Самовращение есть только в равномерном вращательном движении. Тем не менее, явление Кориолиса – Кеплера заслуживает того, чтобы уделить ему особое внимание при рассмотрении вопросов физики движения, тем более что в классической физике оно не имеет удовлетворительного объяснения.

Рассмотрим эти вопросы подробнее.

 

4.1. Первый вариант проявления ускорения Кориолиса. Скорость относительного движения направлена вдоль радиуса вращающейся системы.

А. Н. Матвеев в работе «Механика и теория относительности», 3–е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003 г., допущенной в качестве учебника для студентов высших учебных заведений определяет ускорение Кориолиса следующим образом (см. фотокопии ниже).

\

Книга написана в соответствии с программой курса физики для университетов, однако, физики в данном учебнике нисколько не больше, чем во многих других современных учебниках по физике. Форма написания книги больше соответствует справочной литературе по физике, в которой приводятся не столько физические, сколько математические описания физических явлений.

Матвеев пытается выяснить и донести до читателей «физическую сущность кориолисова ускорения», как он сам пишет на странице 403 своей книги. Однако все принципиальные выводы, касающиеся физики явления Кориолиса, подробно не анализируются. Все спорные и противоречивые моменты явления Кориолиса остаются без доказательства и разъяснений. Механизм образования ускорения Кориолиса не раскрыт. Всё представлено на уровне голой математики, за которой не всегда виден физический смысл явлений, хотя в физике все должно быть наоборот.

Ускорение Кориолиса в первом варианте по Матвееву это изменение скорости тела, движущегося радиально внутри вращающейся системы в направлении, перпендикулярном радиусу вращения. Это общепринятое в классической физике определение ускорения Кориолиса.

На стр. 404 Матвеев пишет: «Скорость вдоль радиуса Vr изменяется за это время (Δt) по направлению, а скорость Vn, перпендикулярная радиусу, изменяется как по направлению, так и по абсолютному значению. Полное изменение составляющей скорости, перпендикулярной радиусу, равно

Δ Vn = Vn 1 – Vn 2 * cos α + Vr * Δα ≈

≈ ω * Δ r + Vr * ω Δ t                                                                      (66.3)

где учтено, что cos α ≈ 1

Следовательно, кориолисово ускорение

w к = ω * Δ r / dt + Vr * ω = 2 * Vr * ω ».

Вообще говоря, поскольку поворот вектора переносной скорости происходит под влиянием переносного центростремительного ускорения, не имеющего отношения к поворотному ускорению Кориолиса, то векторы (Vn1) и (Vn2) можно сравнивать по абсолютной величине без учета (cos α). Иначе по тем же самым соображениям (cos α) следовало бы учитывать и при сравнении векторов (Vr). Но тогда мы вообще не увидели бы приращение (ΔVr) по направлению. При этом из классического ускорения Кориолиса автоматически исчезла бы его вторая половина, связанная с поворотом (Vr), и нам вообще не пришлось бы ничего опровергать. Однако поскольку (cos α) здесь совершенно не причём, то всё намного серьёзнее и связано с неправильными физическими представлениями классической физики о явлении Кориолиса.

Из выражения (66.3) следует, что ускорение Кориолиса — это изменение абсолютной скорости в направленииперпендикулярном радиусу, которое обеспечивается двумя самостоятельными независимыми ускорениями:

 

1. Ускорением, характеризующим приращение линейной скорости переносного вращения по абсолютной величине;



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 167; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.65.111 (0.011 с.)