Линейное движение тела должно осуществляться на постоянном фиксированном расстоянии от точки отсчёта, Т. К. Радиальное движение искажает угловой размер даже неизменной линейной траектории. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Линейное движение тела должно осуществляться на постоянном фиксированном расстоянии от точки отсчёта, Т. К. Радиальное движение искажает угловой размер даже неизменной линейной траектории.



2. Угловое перемещение определяется из внешней точки наблюдения между двумя направлениями на точки изменяющегося положения центра масс движущегося тела. Это означает, что вместе с точкой отсчёта угловое перемещение определяется тремя точками, через которые одновременно можно провести только одну плоскость. Следовательно, для однозначного определения углового перемещения вращательное движение точки должно осуществляться только в одной плоскости.

Первое условие может соблюдаться только при движении тела по окружности, в котором обеспечивается равновесие центробежной и центростремительной силы. В неравномерном движении по окружности с постоянным радиусом это равновесие так же соблюдается только каждый раз на новом энергетическом уровне (см. гл. 7.3).

Перечисленные выше условия могут соблюдаться только относительно вполне определённой точки отсчёта, с которой движущееся тело связано физически либо жесткой механической, либо полевой связью. Третье условие является следствием из первых двух. Однако физически первые два условия обеспечиваются именно третьим условием, т.к. нельзя достоверно определить динамику движения, если исключается его физическая основа – точка его отсчёта.

Именно эти три условия и определяют, как само вращательное движение, так и его динамику. Никакой динамики вращательного движения с переменным радиусом относительно произвольной точки отсчёта и с переменной плоскостью его вращения не может быть в принципе. Радиус это только безразмерный коэффициент связи углового перемещения с линейным. Поэтому динамика вращательного движения может корректно описывать только динамику переменного окружного движения, физически привязанного к постоянному по абсолютной величине радиусу и к постоянной плоскости вращения.

В выводе уравнений Эйлера тело жестко связано с подвижной системой отсчёта, в которой плоскость предполагаемого вращения не изменяется. Следовательно, вектор (А) относительно осей подвижной системы координат можно условно сопоставить с моментом импульса, но только, если его изменения по абсолютной величине обусловлены изменением только параметров динамики окружного движения и не связаны с изменением длины радиуса. Однако в выводе Эйлера эти условия не соблюдаются.

Кроме того, у Эйлера есть ещё и проекции вектора (А) на оси неподвижной инерциальной системы координат, которые в любом случае нарушают три обязательных условия для динамики вращательного движения, что приводит к искажению реальной действительности. Причём в этом нет никакого противоречия с подобным использованием проекций Ньютоновских векторов исходного второго закона Ньютона.

Проецирование линейного движения на оси системы координат в Ньютоновской динамике это фактически оценка линейного движения со стороны, т.к. с реальным перемещением связано только его движение по фактической траектории. Однако в Ньютоновской динамике эти проекции применяются для достоверного определения исходного реального движения. А вот проекции векторов вращательного движения на любые оси, физически не связанные с вращательным движением это очередной абсурд классической физики.

Как отмечалось выше, вектора моментов вращательного движения и его угловой скорости уже сами по себе являются, оценкой вращательного движения из внешней точки, т.е. со стороны. Следовательно, в этом смысле они сами подобны виртуальным проекциям реального движения. Но голая геометрия проекции проекций не отражает реальную действительность. Поэтому в динамике Ньютона проекции проекций запрещены (см. гл. 3.5). Однако это не мешает классической физике применять такое некорректное проецирование в динамике вращательного движения.

Кроме того, вектора вращательного движения в отличие от Ньютоновских векторов не отражают никакого реального силового воздействия или движения в своём направлении. Их единственной физической основой является их физическая связь с осью именно своего вращения в соответствии с третьим условием, которое одновременно является физической основой первых двух условий. Поэтому оценка вращательного движения со стороны любых других не связанных со своим вращением осей, на которые их проецирует Эйлер и классическая физика грубо нарушает три перечисленных выше условия вращательного движения.

Любое линейное движение осуществляется под действием одной единственной результирующей силы. Это особенно актуально для криволинейного движения, в котором результирующая сила обобщает не просто ортогональные составляющие, а множество сил в произвольных направлениях. Когда результирующая сила от множества источников уже полностью сформирована, то физически на тело действует только одна сила. При этом все остальные силы как бы сливаются в едином источнике результирующей силы в одну силу. Но даже в этом случае реальную результирующую силу в динамике Ньютона можно оценить по её проекциям, условно допустив и измерив, ортогональные источники силы.

В динамике вращательного движения эта условность не соответствует реальной действительности. Например, классическая физика допускает располагать ось вращательного движения произвольно, не привязывая её к реальному вращательному движению физически, т.е. это только наблюдательная ось, с которой можно только наблюдать чужое движение.

При этом абстрактное угловое перемещение относительно произвольно выбранной оси можно определить и при движении тела по прямолинейной траектории и даже направить вдоль этой оси моменты. Однако прямая линия имеет бесконечный радиус. Поэтому такой момент фактически будет равен бесконечности, а угловая скорость движения по прямой линии фактически равна нулю, что не совпадает с абстрактными угловыми параметрами при движении вдоль прямой при их оценке со стороны.

На коротком отрезке траектории в минимальном интервале времени (dt) расстояние до прямолинейной траектории классическая физика принимает за конечный радиус и далее определяет все остальные параметры динамики такого псевдо вращения. Однако никакого вращательного движения при перемещении по прямой линии физически нет. Более того, в соответствии с классической динамикой вращательного движения ось и моменты могут располагаться даже с обратной стороны кривизны, что в частности проявляется при проецировании реальной кривой линии на оси прямоугольной системы координат.

При этом вместо того, чтобы подобно динамике Ньютона восстанавливать по этим проекциям реальные движение Эйлер осуществляет обратный процесс. Из полученных проекций он спокойно вычисляет параметры такого с позволения сказать либо прямолинейного, либо обратно–криволинейного вращения. Причём последнее теоретически должно иметь даже не нулевую кривизну и бесконечный радиус, как при движении по прямой линии, а отрицательную кривизну и отрицательный радиус! Однако прямолинейные и обратно–криволинейные виртуальные вращения Эйлера не имеют ничего общего с вращением ни по определению, ни физически!

Если в динамике Ньютона виртуальные проекции векторов реального физического перемещения в пространстве самого тела на ортогональные оси хотя бы отражают относительное линейное движение, то относительного вращения в природе не существует. Даже со стороны вращательное движение может быть косвенно оценено как вращение относительно своего же реального центра, т.е. вращение в своей собственной абсолютной системе координат. А вращения в одной плоскости относительно совпадающих в пространстве центров, но имеющие свою собственную физическую связь с центром – это индивидуальные вращения, но не одно общее вращение.

Поскольку всякая теория подкрепляется только опытом, покажем на конкретном примере, что из виртуальных проекций Эйлера в общем случае невозможно получить достоверные параметры динамики вращательного движения ни по направлению, ни по абсолютной величине. Рассмотрим для простоты динамику вращения твёрдого тела в виде плоского диска, изображённого на рисунке (4.7.1.1). На рисунке (4.7.1.1) показаны суммарные вращения диска по двум методам: по правилам классической динамики вращательного движения, т.е. складываются моменты якобы самостоятельных вращений вдоль главных осей; и второе в соответствии с базовой динамикой Ньютона, когда сначала находятся результирующие всех действующих сил, а затем вызванный ими результирующий момент.

Рис. 4.7.1.1

Классическая динамика вращательного движения утверждает, что момент суммы сил относительно какой–либо оси равен сумме моментов относительно той же оси. Это непосредственно следует из определения векторного произведения. Но это правило справедливо только для одной и той же точки, в которой приложены разные силы. При этом радиус для отдельных исходных сил и для их суммы не меняется. Если складывать силы, приложенные к разным точкам тела, расположенным на разных радиусах от оси, то в общем случае сумма их моментов не равна моменту их суммы, т.к. суммарная сила может оказаться приложенной совсем в другой точке тела и совсем на другом расстоянии от оси симметрии, чем исходные силы. Именно так и происходит в реальной действительности.

При воздействии на вращающееся тело возмущающих факторов, которые изменяют плоскость вращения и соответственно радиусы вращения отдельных частей тела в нём фактически проявляется множество разных сил на разных радиусах. Приведённые на рисунке (4.7.1.1) построения подтверждают этот факт, т.к. Ньютоновская и Эйлеровская динамика даже для симметричного диска дают одинаковый результат только в отдельных частных случаях. Рассмотрим это подробнее.

На рисунке (4.7.1.1 а) показаны исходные (для простоты равные) силы моментов (М1) и (М2), а так же их сумма – момент (МЭ1), мы его назвали Эйлеровский, а также суммарные силы (Fсум1) и (–Fсум1) и их момент (Mн1), мы его назвали Ньтоновский. Причём всё выполнено строго по правилам классической динамики вращательного движения и динамики Ньютона соответственно. Графически понятный результат налицо. Следует пояснить только соотношение величин моментов (МЭ1) и (Mн1).

Очевидно, что суммарные силы (Fсум1) и (–Fсум1) определяются как удвоенная сила в направлении исходных сил (FM1) и (FM2) с каждой стороны (левой и правой), т.е. как сила (2FM1) или (2FM2), приложенная в рассматриваемом симметричном случае к центру линии, соединяющей исходные силы. Момент суммарных сил (Fсум1) и (–Fсум1) равен произведению (2FM1) или (2FM2) на их радиус. Можно видеть, что радиус суммарных сил равен:     

Rсум = (√2) * rmax / 2

Тогда:

Mн1 = 2 * FM1 * √2 * rmax / 2 = 1,414 * FM1(2) * rmax = 1,414 * М1(2)

То есть (Mн1) в 1.414 раза больше каждого из моментов (М1) и (М2) в отдельности. При этом эйлеровская сумма моментов (М1) и (М2) в точности равна (Mн1), т.е. если (М1) и (М2) в соответствии с последним выражением принять за единицу, то:    

МЭ = √(М1 + М2) = 1,414 = Mн1

Таким образом, в данном конкретном случае мы получили точное совпадение динамики Эйлера (МЭ1) и динамики Ньютона (Mн1), что в данном конкретном частном случае подтверждает правило равенства суммы моментов и момента суммы.

Но если отдельные силы и их сумма действуют на разных радиусах, то величина Эйлеровского (МЭ1) и Ньютоновского (Mн1) моментов будет разной. При этом они по–прежнему и всегда будут лежать в плоскости, в которой расположены эти две оси симметрии, т.к. все силы действуют параллельно ей, но направление моментов (МЭ) и (Mн) может отличаться (см. Рис. (4.7.1.2 б). Здесь мы не акцентируем внимание на величине моментов, т.к. их не совсем просто просчитать, но их различие по направлению очевидно, поскольку радиусы в общем случае могут быть разными.

Рис. 4.7.1.2

Суммарные вращения такие, как (МЭ1) и (Mн1) будут неустойчивыми. Поскольку относительно каждого из суммарных моментов масса в начале вращения оказывается распределённой несимметрично относительно центра масс тела, то в дальнейшем моменты постепенно переместятся в центр вращающихся масс, т.е. они совпадут с динамической осью симметрии, что вполне естественно, т.к. вращательное движение абсолютно. Но в момент их образования Ньютон и Эйлер дают разный результат.

Теперь вернёмся к симметричному телу (диску), в котором так же можно увидеть несимметричные моменты (см. Рис 4.7.1.1 б). При появлении момента (M3) в третьей плоскости моменты (МЭ2) и (MН2) совпали только по величине, да и то только для симметричного диска. Для простоты силы (±FM3) третьего момента (M3) мы приложили в точке приложения сил (±Fсум1) Ньютоновского момента (Mн1). Однако на качественную картину это не влияет, т.к. для определения (МЭ2) и (Mн2) они одни и те же.

Результирующие моменты (МЭ2) и (Mн2), как частный случай, опять оказались равными по абсолютной величине, но их направления значительно различаются. Правда, в нашей примитивной изометрии трудно судить о правильности отображения направления вектора (Mн2). Но об этом всё же свидетельствует равенство углов между (–Fсум1) и (–Fсум2) и между (МЭ1) и (Mн2). На рисунке оно практически соблюдено (жёлтые сектора). Во всяком случае, ошибка не может превышать реальность в 2 раза. А в общем случае моменты (МЭ2) и (MН2) не совпадут ни по величине, ни по направлению.

Таким образом, главный вывод из приведённого анализа состоит в том, что никакой объёмной динамики вращательного движения, как и динамики плоского вращательного движения с переменным радиусом, что собственно одно и то же, в природе не существует. В конечном итоге динамика вращательного движения сводится к плоскому вращению с установившимся радиусом. Даже если это объёмное тело, то всё сводится к согласованным параллельным плоским вращениям его соответствующих сечений.

Понятия классической динамики вращательного движения изначально введены классической физикой при анализе плоского вращения без изменения положения оси симметрии и угловой скорости в пространстве. Причём в главе (3) было показано, что они применимы только к динамике вращения с постоянным радиусом, который фактически является индивидуальным безразмерным коэффициентом, привязывающим классическую динамику вращения к базовой динамике Ньютона.

При неопределённом радиусе этот коэффициент (эта определённость) отсутствует, т.е. отсутствуют и сами угловые физические величины. Следовательно, такое вращательное движение не определено. В этом случае о динамике самого переходного процесса, который динамика вращательного движения принципиально не видит можно судить только по итогам сравнения начального и конечного установившегося вращения. И хотя в тему настоящей главы это не входит, попутно заметим, что это же, по всей видимости, является и причиной квантования микромира по радиусу орбит, из которого вытекает квантование и других параметров микромира.

Вращательное движение с постоянным радиусом абсолютно, т.к. оно осуществляется в собственной индивидуальной, т.е. абсолютной системе координат, привязанной к центру вращения и определяющееся постоянным радиусом. Это означает, что вращательные движения с разными радиусами, а также пространственно разделённые вращательные движения находятся в разных измерениях. Поэтому их одноимённые физические величины, хотя и имеют принципиально одинаковый физический смысл, но участвуют в разных физических процессах и, следовательно, в рамках вращательной динамики не могут быть связаны общей динамикой. В единый процесс их может объединить только динамика Ньютона, без которой они могут быть определены только как кванты разных состояний.

Классическая физика распространила понятия динамики вращательного движения с постоянным радиусом на плоское вращение с изменяющимся радиусом и на объёмные вращения твёрдого тела относительно трёх главных осей. Тем самым она смешала в единой динамике одноимённые физические величины разных вращательных движений. Это привело к многочисленным противоречиям и парадоксам. Парадоксы и противоречия плоского вращения подробно описаны в главе 3. Но в классической динамике вращения твёрдого тела нисколько не меньше противоречий, связанных со смешением разных видов вращательного движения в единой динамике.

Игнорирование классической физикой переходного процесса преобразования видов вращательного движения по радиусу, не подчиняющегося законам вращательного движения, разрушает логическую грань в виде постоянного радиуса, установленную самой же классической физикой, в соответствии с которой вращательное движение выделяется в особый вид механического движения со своими собственными физическими величинами и законами динамики. В плоском вращении с изменяющимся радиусом это в частности привело к парадоксальному выводу о сохранении импульса вращательного движения там, где в отсутствие постоянного радиуса – вращательного движения собственно уже и нет.

Причём закон сохранения момента импульса в плоском вращении естественно не согласуется и с классической динамикой объёмного вращения, что можно наглядно показать на примере гироскопа. В прецессирующем гироскопе, так же, как и в плоском вращении с изменяющимся радиусом действует внешняя сила. Но её момент уравновешивается силами Кориолиса, т.е. для динамики в плоскости перпендикулярной плоскости прецессии внешний момент отсутствует. В плоскости прецессии так же нет никаких внешних моментов, т.к. они уравновешены в пределах каждого её цикла – нутации. Правда, как отмечалось выше, это равновесие осуществляется каждый раз на новом энергетическом уровне. Но классическая физика этот момент отрицает.

Это означает, что в гироскопе, так же, как и в плоском движении с изменяющимся радиусом в отсутствие поддерживающей силы внешние моменты формально, т.е. с точки зрения классической физики отсутствуют. Но тогда этот процесс изменения радиуса по направлению в соответствии с изменением плоскости вращения ничем не отличается от преобразования видов вращательного движения по абсолютной величине радиуса в плоском движении, в котором тангенциальные силы так же присутствуют в неявном виде или формально отсутствуют.

Следовательно, в соответствии с законом сохранения момента импульса полный момент импульса гироскопа должен оставаться постоянным. В классической же динамике гироскопа он получает приращение, на основе которого и определяется угловая скорость прецессии (см. выше классическое описание физического механизма движения гироскопа)! Вывод здесь может быть только один. Динамика вращательного движения с изменяющимся, как по абсолютной величине, так и по направлению плоскости вращения радиусом не подчиняется классической динамике Ньютона.

Правда, в объёмном движении гироскопа радиус изменяется не по абсолютной величине, а по направлению. Но в динамике Ньютона классическая физика эти понятия принципиально не различает и определяет их одним общим термином – приращение. Следовательно, с точки зрения динамики Ньютона в обоих случаях радиус ведёт себя одинаково, и в том и в другом случае он получает приращение.



Поделиться:


Последнее изменение этой страницы: 2021-08-16; просмотров: 73; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.14.130.24 (0.029 с.)