Основні поняття та означення функції багатьох змінних.



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

Основні поняття та означення функції багатьох змінних.



Способи задання функції. Область визначення. Графіки. Лінії рівня.

На практиці досить часто функція y залежить не від однієї змінної x, а від багатьох аргументів x1,…,xn.

Означення. Множина значень {x1,…,xn}, за яких вираз f(x1,…,xn) має зміст, називається областю визначення функції від n змінних y = f(x1,…,xn).

Приклади.

1. Функція від двох змінних z=3x+5xy+y2. Область визначення цієї функції - всі пари дійсних чисел (x;y).

2. Функція від чотирьох змінних y=2x1+3x2-x3+7x4.

3. Функція від трьох змінних V=V(a,b,c)=a×b×c. Об’єм паралелепіпеда є функцією від довжин його сторін.

4. Функція від двох змінних Q=F(K,L). Обсяг випущеної продукції Q є функцією від кількості затраченого капіталу K та кількості затраченої праці L. Областю визначення цієї функції є множина {K³0; L³0}.

5. Область визначення функції визначається з нерівності 100-x2-y2³0, тобто x2+y2£102. Це круг з центром у початку координат і радіусом r = 10.

Функція від двох змінних (аргументів) f(x,y) представляє собою деяку поверхню в трьохвимірному просторі. Зокрема, графіком функції є верхня половина сфери (рис. 6.1).

z

 
 

 


6 8 10 y

 

x

Рис. 6.1.

Функції від двох змінних геометрично зображають також за допомогою ліній рівня (ліній однакового рівня, ізоліній).

Означення. Лінією рівня функції від двох змінних z=f(x,y) називається множина точок площин OXY таких, що f(x,y)=const=C.

Прикладом ізоліній є паралелі та меридіани.

Приклади.

1. Побудуємо лінії однакового рівня функції . При C=0 маємо тобто x2+y2=102 (коло з радіусом r=10, рис.6.2).

При C=6 отримуємо тобто x2+y2=82 . Отже лінією рівня, яка відповідає константі C=6, є коло з радіусом r = 8.

При C=8 отримуємо ізолінію (неявну функцію y від x) x2+y2=62.

 

 

y

 
 

 


6 8 10 x

Рис. 6.2.

2. Для випуску продукції Q використовують ресурси x1 та x2. Виробнича функція має вигляд Q=10x1+20x2 (ресурси повністю взаємозамінні, наприклад, цвяхи та шурупи).

Зобразити ізолінії для Q=Q(x1,x2) (лінії однакової кількості (quantity) продукції, ізокванти ).

Очевидно, що при C=60 ізолінія (ізокванта) – це відрізок прямої 10x1+20x2=60, а при C=40 – відрізок прямої 10x1+20x2=40 (рис. 6.3).

(Ресурс x1)

4 Q=60

3

2 Q=40

1

1 2 3 4 5 6 (Ресурс x2)

Рис. 6.3.

3. Виробнича функція має вигляд Q=min{10x1,20x2} (ресурси повністю взаємодоповнюючі, наприклад, калійні та азотні добрива).

Тоді в точках (x1=2, x2=1), (x1=4, x2=1), (x1=2, x2=3) значення Q=40. У точках (x1=4; x2=2) та (x1=4; x2=4) випуск набуває значення Q=80. На рис. 6.4 зображені лінії однакового рівня (ізокванти) для кількості продукції Q.

(Ресурс x1)

5

2 Q=80

1 Q=40

1 2 3 4 5 (Ресурс x2)

 

Рис. 6.4.

 

Зазначимо, що в другому та третьому прикладах зобразити функцію Q=Q(x1,x2) геометрично в тривимірному просторі дуже складно.

 

 

Похідна за напрямом. Градієнт.

Нехай функція z=f(x;y) визначена на деякому околі т. Р000);

l - деякий промінь з початком у точці Р000);

Р(х;у) – точка на цьому промені, яка належить околу, що розглядається

Dl- довжина відрізка Р0Р.

 

Границя

, якщо вона існує, називається похідною за напрямом.

 

Похідна характеризує швидкість змінювання функції у точці Р000) за напрямом .

 

 

Вектор з координатами , який характеризує напрям максимального зростання функції z=f(x;y) у точці Р000), називається градієнтом у цій точці .

 

Частинні похідні та диференціали

Вищих порядків.

Для функцій двох та багатьох змінних , розглянемо частинні похідні.

Частинною похідною функції по одній змінній називають скінченну границю виду:

де та – частинний приріст функції по одній змінній.

Повним диференціалом функції багатьох змінних називається головна лінійна частина приросту функції. Для функції повний диференціал має вигляд

.

Повний диференціал функції багатьох змінних застосовується до наближених обчислень, вважаючи, що .

Частинні похідні знаходяться за правилами та формулами диференціювання функції однієї змінної, вважаючи решту змінних сталими величинами.

Частинною похідною n-го порядку функції багатьох змінних по одній змінній називають першу похідну від -ї похідної.

 

Приклад . Знайти частинні похідні другого порядку функції

.

Розв’язання. Знайдемо частинні похідні першого порядку по кожній змінній:

Від кожної частинної похідної першого порядку та знайдемо першу похідну по кожній змінній. Це будуть частинні похідні другого порядку і їх буде чотири:

Мішані похідні, які відрізняються порядком диференціювання, , рівні між собою. Ця умова виконується у випадку їх неперервності.

 

Приклад . Знайти , якщо .

Розв’язання. Знайдемо частинну похідну функції тільки по або по , а потім від неї знайдемо першу похідну по іншій змінній. Одержимо

 

Задача. Знайти рівняння прямої методом найменших квадратів, користуючись таблицею значень

.

Розв’язання. Згідно методу найменших квадратів для знаходження параметрів і прямої використовують систему рівнянь:

(34)

Для простоти складання системи (34) складемо таблицю значень:

Відповідь. Рівняння прямої має вигляд .

 

Неявні функції.

Похідні неявних функцій.

Частинні похідні неявної функції , заданої рівнянням , можуть бути обчисленні за формулами:

, . (2.8)

Знайти похідну від функцій, заданих неявно:

а) .

.

Знайдемо частинні похідні: , .

За формулою (2.7) маємо: .

б) .

.

, .

За формулою (2.7) маємо: .

Нехай потрібно знайти похідну у тому випадку, коли функція задана неявно у вигляді . Узявши від функції F(x,y) повний диференціал, отримуємо

звідки .

Приклад.

Знайти похідну якщо

Маємо

звідки .

 

 



Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.229.142.91 (0.012 с.)