Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Регуляторных механизмов. ФункцииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
ГЕМАТОЭНЦЕФАЛИЧЕСКОГО БАРЬЕРА А. Единство регуляторных механизмов заключается в их взаимодействии. Так, например, увеличение содержания углекислого газа в крови возбуждает хеморецепторы аортальной и синокаро-тидной рефлексогенных зон, при этом увеличивается поток импульсов по соответствующим нервам в ЦНС. а оттуда - к дыхательной мускулатуре, что ведет к учащению и углублению дыхания. Углекислый газ действует на дыхательный центр и непосредственно, что также вызывает усиление дыхания. Воздействие холодного воздуха на терморецепторы кожи увеличивает ноток афферентных импульсов в ЦНС. Это в свою очередь ведет к выбросу гормонов, повышающих интенсивность обмена веществ, и к увеличению теплопродукции. Б. Особенности нервного и гуморального механизмов регуляции функций организма. 1. Нервная система в отличие от гуморального механизма регуляции организует ответные реакции на изменение внешней среды организма. Пусковым звеном в нейрогуморальной регуляции при изменении внутренней среды также нередко является нервная система. 2. У нервного и гуморального механизмов регуляции функций различные способы связи: у нервной системы - нервный импульс как универсальный сигнал, а у гуморального механизма связь с регулируемым органом или тканью осуществляется с помощью различных химических веществ. Таковыми являются гормоны, медиаторы, метаболиты и так называемые тканевые гормоны. Некоторые медиаторы, например катехоламины, попадая в кровь, могут действовать не только в месте их выделения нервными окончаниями, но и'на другие органы и ткани организма, т.е. выступать в роли гуморальных веществ, участвующих в регуляции функций других органов организма. 3. У нервного и гуморального механизмов регуляции функций организма различная точность связи. Химические вещества, попадая в кровь, разносятся по всему организму и действуют нередко на многие органы и ткани - это системный (генерализованный) характер влияния. Например, адреналин, тироксин, попадая в кровь, разносятся по всему организму и действуют на клетки всех органов и тканей организма. Нервная система может оказывать точное, локальное влияние на отдельный орган или даже на группу клеток этого органа. Так, нервная система может вызывать сокращения мышц указательного или другого какого-либо пальца рукн, не вызывая сокращения мышц всей конечности или даже отдельных других пальцев. Следует заметить, что и у гуморального механизма нередко имеется точный адресат воздействий. АКТГ, например, хотя и разносится с кровью по всему организму, но действует только на кору надпочечников. Тнрсотропный гормон (ТГГ) регулирует функцию щитовидной железы. В свою очередь и нервная система может оказывать генерализованное влияние. Например, возбуждение симпатической нервной системы в экстремальных условиях ведет к мобилизации ресурсов всего организма для достижения цели (стимулируется деятельность сердечно-сосудистой, дыхательной и эндокринной систем). 4. У нервного и гуморального механизмов регуляции различная скорость связи: относительно медленно распространяются химические вещества с током крови (самая большая скорость ваорте - 0,25 м/с, а самая маленькая - в капиллярах - 0,3-0,5 мм/с). Частица крови проходит один раз через весь организм (большой и малый круг кровообращения) за 22 с. Нервный импульс распространяется со скоростью до 120 м/с. 5. Гормональные механизмы регуляции подчиняются нервной системе, которая передает свое влияние на эндокринные железы непосредственно или с помощью нейропептидов и своих медиаторов (посредников), выделяемых нервными окончаниями и действующих на специальные, чувствительные к медиаторам структуры - рецепторы. 6. У гуморального механизма регуляции нередко наблюдается противоположное влияние биологически активных веществ на один и тот же орган в зависимости от точки приложения действия этого химического вещества. Так, угольная кислота, действуя прямо на кровеносные сосуды, вызывает их расширение, а посредством возбуждения центра кровообращения - сужение. Адреналин при непосредственном действии на сердце стимулирует его работу, а при введении в цереброспинальную жидкость, возбуждая центры блуждающих нервов, тормозит работу сердца. Поэтому результат действия химического вещества может зависеть от того, проникает оно в цереброспинальную жидкость через гематоэнцефолический барьер (ГЭБ) или нет (регулирующая функция ГЭБ). В. Функции ГЭБ. Регулирующая функция ГЭБ заключается и в том, что он формирует особую внутреннюю среду мозга, обеспечивающую оптимальный режим деятельности нервных клеток. Считают, что барьерную функцию при этом выполняет особая структура стенок капилляров мозга. Их эндотелий имеет очень мало пор, узкие щелевые контакты между клетками почти не содержат «окошек». Составной частью барьера являются также глиальные клетки, образующие своеобразные футляры вокруг капилляров, покрывающие около 90% их поверхности. Наибольший вклад в развитие представлений о ГЭБ внесли Л.С.Штерн и сотр. Этот барьер пропускает воду, ионы, глюкозу, аминокислоты, газы, задерживая многие физиологически активные вещества: адреналин, серотонин, дофамин, инсулин, тироксин. Однако в нем существуют «окна», через которые соответствующие клетки мозга - хеморецепторы получают прямую информацию о наличии в крови гормонов и других, не проникающих через барьер веществ; клетки мозга выделяют и свои нейросекреты (см. раздел 1.2). Зоны мозга, не имеющие собственного ГЭБ, - это гипофиз, эпифиз, некоторые отделы гипоталамуса и продолговатого мозга. ГЭБ выполняет также защитную функцию: предотвращает попадание микроорганизмов, чужеродных или токсических веществ экзо- и эндогенной природы в межклеточные пространства мозга. ГЭБ не пропускает многие лекарственные вещества, что необходимо учитывать в медицинской практике. СИСТЕМНЫЙ ПРИНЦИП РЕГУЛЯЦИИ 1.5.1. Структура функциональных систем и мультипараметрический принцип их взаимодействия Поддержание констант внутренней среды организма осуществляется с помощью регуляции деятельности различных органов и физиологических систем, объединенных в одну функциональную систему. Представление о функциональных системах разработал П.К.Анохин (1898-1974). В последние годы теория функциональных систем успешно развивается К. В. Судаковым. А. Структура функциональной системы. Функциональная система - динамическая, избирательно объединенная центрально-периферическая организация, деятельность которой направлена на достижение полезного для организма приспособительного результата. Она включает следующие элементы: • управляющее устройство - нервный центр, представляющий объединение ядер различных уровней ЦНС; • выходные каналы нервного центра (нервы и гормоны); • исполнительные органы - эффекторы, обеспечивающие в ходе физиологической деятельности поддержание регулируемого процесса (константы) на некотором оптимальном уровне (полезный результат деятельности функциональной системы); • рецепторы результата (сенсорные рецепторы) - датчики, воспринимающие информацию о параметрах отклонения регулируемого процесса (константы) от оптимального уровня; • каналы обратной связи - входные каналы, информирующие нервный центр с помощью импульсаций от рецепторов результата или на основе изменений химического состава тех или иных жидкостей организма о достаточности либо недостаточности эффекторных усилий по поддержанию регулируемого процесса (константы) на оптимальном уровне (схема 1.2). Афферентные импульсы от рецепторов результата по каналам обратной связи поступают в нервный центр, регулирующий ту или иную константу. Например, при увеличении артериального давления в большей степени начинают раздражаться барорецепторы рефлексогенных сосудистых зон, в результате чего увеличивается поток импульсов в ЦНС - в центр кровообращения. Взаимодействие нейронов этого центра и изменение интенсивностиэфферентной импульсации ведут к ослаблению деятельности сердца и расширению кровеносных сосудов. Артериальное давление крови снижается. Возможны флюктуации величины артериального давления, но после ряда колебаний оно возвращается к нормальной величине. Если описанного механизма оказалось недостаточно и давление остается повышенным, включаются дополнительные регуляторные механизмы, в частности возрастает переход жидкости из кровеносного русла в межклеточное пространство (интерстиций), включается эндокринная система, больше воды выводится из организма почками. Совокупность перечисленных процессов ведет к нормализации артериального давления. При снижении артериального давления эти механизмы работают в противоположном направлении. Подобным образом работают и другие гомеостатирующие функциональные системы.
Последние действуют, во-первых, непосредственно на орган-эффектор (в данном случае это приводит к расширению кровеносных сосудов и улучшению кровоснабжения органа, что весьма важно). Во-вторых, метаболиты, попадая в кровь, а с кровью в ЦНС, действуют также и на соответствующие центры, изменение активности которых вносит необходимые корригирующие влияния на органы и ткани организма. В-третьих, метаболиты воздействуют также на рецепторы рабочего органа (или органов) - рецепторы результата, что тоже отражается на активности рецепторов и, естественно, на импульсации в афферентных путях, проводящих импульсы в ЦНС по принципу обратной связи. Архитектура различных функциональных систем принципиально одинакова, что называют изоморфизмом. Вместе с тем функциональные системы могут отличаться друг от друга по степени разветвленности как центральных, так и периферических механизмов. Необходимо подчеркнуть, что системообразующим фактором, выступающим в качестве инструмента включения тех или иных органов, тканей, механизмов в функциональную систему, является полезный для жизнедеятельности организма приспособительный результат - конечный продукт физиологической активности функциональной системы. Ряд гомеостатичдских функциональных систем представлен исключительно внутренними, генетически детерминированными механизмами вегетативной нервно-гормональной регуляции и не включает механизмы поведенческой соматической регуляции. Примером являются функциональные системы, определяющие оптимальные для обмена веществ организма кровяное давление, содержание ионов в крови, не изменяющих осмолярность и не вызывающих чувство жажды, рН внутренней среды организма. Другие гомеостатические функциональные системы включают целенаправленное поведение во внешней среде на базе доминирующих мотивационных возбуждений, отражающих сдвиги различных показателей метаболизма. В этом случае системообразующим фактором является также и мотивация. Примерами таких функциональных систем могут служить системы, обеспечивающие поддержание оптимального уровня питательных веществ, осмотического давления и объема жидкости в организме, температуры внутренней среды организма. В подобном случае опорно-двигательный аппарат выступает как составная часть эффектора - рабочего органа. При этом реагируют многие внутренние органы, обеспечивающие усиление сократительной деятельности скелетной мускулатуры, - это тоже составная часть эффектора. В частности, усиливается деятельность сердца, стимулируется дыхание. Б. Мультипараметрический принцип взаимодействия различных функциональных систем. Это принцип, определяющий обобщенную деятельность функциональных систем. Относительная стабильность показателей внутренней среды организма является результатом согласованной деятельности многих функциональныхсистем. Выяснилось, что различные константы внутренней среды организма оказываются взаимосвязанными. Это проявляется в том, что изменение величины одной константы может привести к изменению параметров других констант. Например, избыточное поступление воды в организм сопровождается увеличением объема циркулирующей крови, повышением артериального давления, снижением осмотического давления плазмы крови. В функциональной системе, поддерживающей оптимальный уровень газового состава крови, одновременно осуществляется взаимодействие рН, Рсо2, и Ро2. Изменение одного из этих параметров немедленно приводит к изменению количественных характеристик других параметров. На основе принципа мультипараметрического взаимодействия все функциональные системы гомеостатического уровня фактически объединяются в функциональную систему гомеостазиса (К.В. Судаков). Компоненты такой системы ориентированы на поддержание отдельных показателей внутренней среды организма. Другие компоненты ориентированы на достижение некоторых поведенческих результатов (поведенческое звено регуляции) в соответствии с глобальными потребностями организма поддержать всю совокупность показателей внутренней среды организма (см. схему 1.2). Для достижения любого приспособительного результата формируется соответствующая функциональная система. Системогенез Согласно данным П.К.Анохина, Системогенез - избирательное созревание и развитие функциональных систем в анте- и постна-тальном онтогенезе. В отличие от понятия «морфогенез» (А.Н.Се-верцев), отражающего развитие органов в онтогенезе, термин «Системогенез» отражает развитие в онтогенезе различных по функции и локализации структурных образований, которые объединяются в полноценную функциональную систему, обеспечивающую новорожденному выживание. В настоящее время термин «Системогенез» применяется в более широком смысле, при этом под системогенезом понимают процессы не только онтогенетического формирования, но и преобразование функциональных систем в ходе жизнедеятельности организма. Примеры динамичных перестроек функциональных систем можно найти, анализируя активность индивидуумов при формировании новых навыков. Так, системные механизмы достижения полезных результатов на начальном этапе формирования навыков и на этапе автоматизированных навыков будут различными прежде всего по объему мышечных усилий и уровню их вегетативного обеспечения.
|
||||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 640; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.195.84 (0.009 с.) |