Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Структурно-функциональная характеристика синапсов

Поиск

А. Классификация межнейронных синапсов. Классифицируют такие синапсы по нескольким критериям. 1. По локализации выде­ляют аксодендритные, аксосоматические, аксоаксонные, дсндро-соматнческие, дендродсндритные синапсы. Функция двух послед­них форм изучена недостаточно.

2. По эффекту синапсы делят на возбуждающие, т. е. запус­кающие генерацию ПД, и тормозные, препятствующие возникно­вению ПД.

3. По способу передачи сигнала различают синапсы химические, электрические и смешанные. Химические синапсы являют­ся специфическим межклеточным контактом для нервной систе­мы. В них передача на постсинаптическую клетку осуществляется с помощью химического посредника - медиатора. Этот тип си­напса преобладает в нервной системе человека и других высших позвоночных.

Электрические синапсы обнаружены в головном мозге млекопитающих: мезэнцефальном ядре тройничного нерва, вести­булярном ядре Дейтерса (преддверное латеральное ядро), ядренижней оливы продолговатого мозга. Имеются следующие элек­трические синапсы: аксон - сома, аксон - дендрит, аксон - аксон, дендрит - сома и сома - сома. т. е. как и у химических синапсов.

В смешанных синапсах наряду с химической передачей имеются участки с электротоническим механизмом передачи (например, в спинном мозге лягушки).

Б. Функциональные элементы химического синапса. 1.Пресинаптическое окончание образуется по ходу разветвления аксона, ин-нервируюшего другую клетку. Главным ультраструктурным фраг­ментом пресинаптического окончания являются синаптические пу­зырьки (везикулы) диаметром около 40 нм. Они расположены пре­имущественно вблизи периодических утолщений синаптической мембраны, называемых активными зонами. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из кото­рых имеется, по подсчетам разных авторов, от 1000 до 10000 моле­кул химического вещества, участвующего в передаче влияния через синапс и в связи с этим названного медиатором (посредник). Ме­диатор образуется либо в теле нейрона, попадая в синаптическую бляшку, пройдя через весь аксон, либо непосредственно в синапти­ческой бляшке. В обоих случаях для синтеза медиатора нужны фер­менты, образующиеся в теле клетки на рибосомах. Важными струк­турами пресинаптического окончания являются митохондрии, осуществляющие энергетическое обеспечение процесса синаптиче­ской передачи, цистерны гладкого эндоплазматического ретикулу-ма, содержащие депонированный ион Са2+, а также микротрубочки и микрофиламенты, участвующие во внутриклеточном передвиже­нии везикул. Часть мембраны пресинаптического окончания, огра­ничивающая синаптическую щель, называется пресинаптической мембраной. Через нее осуществляется выброс медиатора в синап­тическую щель посредством экзоцитоза.

2. Синоптическая щель имеет ширину 20-50 нм. В ней содержат­ся межклеточная жидкость и мукополисахаридное вещество в виде полосок, мостиков, которое обеспечивает связь между пре- и пост-синаптической мембранами, могут быть ферменты.

3. Постсипаптическая мембрана - это утолщенная часть клеточ­ной мембраны иннервируемой клетки, содержащая белковые рецеп­торы, имеющие ионные каналы и способные связать молекулы ме­диатора, вследствие чего возникает активация ионных каналов. Ха­рактеристику электрических синапсов ЦНС см в разделе 4.3.4.

4.3.2. Механизм передачи сигнала в химических синапсах

А. Нервный импульс, поступивший в пресинаптическое окон­чание, вызывает деполяризацию его мембраны, открывающую

потенциалзависимые Са-каналы. Ионы Са2+ входят согласно концентрационному и электрическому градиентам внутрь окончания, что ведет к увеличению содержания ионов в цито-золе в 10-100 раз. Ион Са2+ вызывает слияние синаптически.ч пузырьков с внутренней поверхностью пресинаптической мем­браны и последующий экзоцитоз содержащегося в них медиа­тора в синаптическую щель. Выделение молекул медиатора из пресинаптического окончания пропорционально количеству поступивших туда ионов Са2* в степени п=4. Например, при увеличении концентрации ионов Са2+ в 2 раза выход медиато­ра может увеличиться в 24, т.е. в 16 раз. Один из возможных механизмов участия ионов Са2+ в секреции медиатора состоит в активации (фосфорилировании) специального белка, запус­кающего этот процесс. Выделение медиатора в синаптическую щель осуществляется в небольшом количестве и в состоянии покоя синапса - 1-2 кванта в секунду. Каждый квант (синаптический пузырек) содержит от 1000 до 10000 молекул.

Б. Молекулы медиатора, поступившие в синаптическую щель, диффундируют к постсинаптической мембране и вступают во взаи­модействие с ее рецепторами. Скорость диффузии молекул медиа­тора позволяет им пройти синаптическую щель за 0,1-0,2 мс. Дли­тельность действия медиатора на рецепторы постсинаптической мембраны, определенная по продолжительности открывания ион­ных каналов в ней, равна 1-2 мс. Удаление медиатора происходит путем диффузии его из щели в окружающую жидкость, обратно­го захвата пресинаптическим окончанием и разрушением под действием фермента, находящегося в синаптической щели и постсинаптической мембране. Ацетилхолин инактивируется ацетилхолинэстеразой, норадреналин - моноаминоксидазой, катехол-О - метилтрансферазой и т.д.

В. Возбуждение постсинаптической мембраны. Выделившийся в синаптическую щель медиатор действует на рецепторы пост­синаптической мембраны и повышает ее проницаемость для ио­нов Ма+ и К+. Канал имеет слабую избирательность в отноше­нии этих ионов, поэтому ионные токи через канал зависят глав­ным образом от концентрационного и электрического гра­диентов. В связи с этим вход в клетку ионов Ка+, которому спо­собствуют как концентрационный, так и электрический гради­енты, преобладает над выходом ионов К+, так как их выходу из клетки препятствует электрический градиент. Это ведет к депо­ляризации постсинаптической мембраны, называемой возбуж­дающим постсинаптическим потенциалом (ВПСП). При дости­жении ВПСП критической величины в нейроне возникает ПД (см. также раздел 4.4). 4.3.3. Особенности проведения возбуждения в химических синапсах

1. Одностороннее проведение возбуждения - в направлении от пресинаптического окончания в сторону постсинаптической мем­браны - связано с тем, что медиатор выделяется из пресинаптиче­ского окончания, а взаимодействующие с ним рецепторы, имею­щие ионные каналы, необходимые для формирования синаптических потенциалов, находятся только на постсинаптической мембране. Поэтому пресинаптическая мембрана нечувствительна к выделившемуся медиатору. ВПСП, возникающий на постсинап­тической мембране, не в состоянии возбудить пресинаптическое окончание из-за дальности расстояния.

2. Замедленное проведение сигнала объясняется синаптической задержкой (интервал между приходом импульса к пресинаптической мембране и возникновением ВПСП в нейроне составляет 0,2-0,5 мс). Необходимо время для выделения медиатора из пре­синаптического окончания, диффузии его к постсинаптической мембране, возникновения ВПСП.

3. Низкая лабильность синапсов, равная 100-150 передаваемым импульсам в секунду, что в 5-6 раз ниже лабильности аксона. Главной причиной низкой лабильности синапса является сравни­тельно большая совокупная длительность процессов, обеспечи­вающих проведение возбуждения от пресинаптической мембраны к нейрону.

4. Проводимость химических синапсов сильно изменяется под влиянием биологически активных веществ, лекарственных средств и ядов. Она легко блокируется и стимулируется.

4.3.4. Электрические синапсы ЦНС

Электрические синапсы имеют щель, которая на порядок мень­ше, чем щель у химических синапсов. Они проводят сигнал в обе стороны без синаптической задержки. Передача сигнала не блоки­руется при удалении ионов Са2+. Кроме того, электрические синап­сы малочувствительны к фармакологическим препаратам и ядам, практически неутомляемы, как и нервное волокно. Контактирую­щие мембраны нейронов связаны друг с другом полуканалами бел­ковой природы - коннексонами (от англ, соппеаюп - связь). Через коннексоны клетки обмениваются некоторыми компонентами ци­топлазмы: аминокислотами, пептидами, РНК, метаболитами, цик­лическими нуклеотидами. Очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран обеспечивает хо-

рошую электрическую проводимость. Определенную роль в обес­печении такой электрической проводимости играют коннексоны.

Механизм передачи возбуждения в электрическом синапсе по­добен таковому в нервном волокне: ПД, возникающий на преси­наптической мембране, непосредственно раздражает постсинап-тическую мембрану. Работа электрических синапсов может регу­лироваться близлежащими химическими синапсами. Например, между шипиками клеток ядра нижней оливы продолговатого моз­га передача возбуждения блокируется, если выделяется медиатор в рядом расположенном химическом синапсе. Электрические си­напсы, как выяснилось, оказывают действие на метаболизм кон­тактирующих клеток.

МЕДИАТОРЫ И РЕЦЕПТОРЫ ЦНС

Медиаторами ЦНС являются многие химические вещества, разнородные в структурном отношении (в головном мозге обна­ружено около 30 биологически активных веществ). По химиче­скому строению их можно разделить на несколько групп, главны­ми из которых являются моноамины, аминокислоты и полипеп­тиды. Достаточно широко распространенным медиатором является ацетилхолин.

А. Ацетилхолин. Встречается в различных отделах ЦНС, извес­тен в основном как возбуждающий медиатор: в частности, является медиатором а-мотонейронов спинного мозга, иннервирующих ске­летную мускулатуру. С помощью ацетилхолина а-мотонейроны по коллатералям своих аксонов передают возбуждение на тормозные клетки Реншоу. В ретикулярной формации ствола мозга, в гипота­ламусе обнаружены М- и К-холинорецепторы. При взаимодействии ацетилхолина с рецепторным белком последний изменяет свою конформацию, в результате чего открывается ионный канал. Тор­мозное влияние ацетилхолин оказывает с помощью М-холинорецепторов в глубоких слоях коры большого мозга, в стволе мозга, хвостатом ядре.

Б. Моноамины. Выделяют катехоламины, серотонин и гистамин. Большинство из них в значительных количествах содержится в нейронах ствола мозга, в меньших количествах они обнаружи­ваются в других отделах ЦНС.

Катехоламины обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, черной субстанции, лимбической системе, полосатом теле.

С помощью серотонина в нейронах ствола мозга переда­ются возбуждающие и тормозящие влияния, в коре мозга - тормозящие влияния. Серотонин содержится главным образом в структурах, имеющих отношение к регуляции вегетативных функ­ций. Особенно много его в лимбической системе, ядрах шва. В нейронах названных структур выявлены ферменты, участвующие в синтезе серотонина. Аксоны этих нейронов проходят в бульбоспинальных путях и оканчиваются на нейронах различных сег­ментов спинного мозга. Здесь они контактируют с клетками преганглионарных симпатических нейронов и со вставочными ней­ронами желатинозной субстанции. Полагают, что часть этих так называемых симпатических нейронов, а может быть и все, явля­ются серотонинергическими нейронами вегетативной нервной системы. Их аксоны, согласно данным некоторых авторов, идут к органам пищеварительного тракта и стимулируют их сокращение.

Гистамин в довольно высокой концентрации обнаружен в гипофизе и срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низкий. Медиаторная роль его изучена мало. Выделяют Н1- и Н2-гистаминорецепторы. Н1-рецепторы имеются в гипоталамусе и участвуют в регуляции потребления пищи, терморегуляции, секреции пролактина и ан­тидиуретического гормона. Н2-рецепторы обнаружены на глиаль-ных клетках.

В. Аминокислоты. Кислые аминокислоты (глицин, у-амино-масляная кислота) являются тормозными медиаторами в синапсах ЦНС и действуют на тормозные рецепторы (см. раздел 4.8). Ней­тральные аминокислоты (а-глутамат, а-аспартат) передают воз­буждающие влияния и действуют на соответствующие возбуж­дающие рецепторы. Предполагают, что глутамат может быть ме­диатором афферентов в спинном мозге. Рецепторы глутаминовой и аспарагиновой аминокислот имеются на клетках спинного моз­га, мозжечка, таламуса гиппокампа, коры большого мозга. Пола­гают, что глутамат - самый распространенный медиатор ЦНС.

Г. Полипептиды. В синапсах ЦНС они также выполняют ме-диаторную функцию. В частности, субстанция Р является медиа­тором нейронов, передающих сигналы боли. Особенно много это­го полипептида в дорсальных корешках спинного мозга. Это по­служило основанием к предположению, что субстанция Р может быть медиатором чувствительных нервных клеток в области их переключения на вставочные нейроны. Субстанция Р в больших количествах содержится в гипоталамической области. Различают два вида рецепторов субстанции Р: рецепторы типа SР-Р, распо­ложенные на нейронах мозговой перегородки, и рецепторы типа SР-E, расположенные на нейронах коры большого мозга.

Энкефалины и эндорфины - медиаторы нейронов, блокирующих болевую импульсацию. Они реализуют свое влияние посредством соответствующих опиатных рецепторов, кото­рые особенно плотно располагаются на клетках лимбической сис­темы; много их также на клетках черной субстанции, ядрах про­межуточного мозга и солитарного тракта, имеются они на клетках голубого пятна, спинного мозга. Их лигандами являются (3-эндорфин, динорфин, лей- и мет-энкефалины.

Ангиотснзин участвует в передаче информации о потребности организма в воде, люлиберин - в половой активности.

Физиологические эффекты действия некоторых медиаторов головного мозга. Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает поддержание бодрство­вания, участвует в механизмах формирования некоторых фаз сна, сновидений; дофамин - в формировании чувства удо­вольствия, регуляции эмоциональных реакций, поддержании бодрствования. Дофамин полосатого тела регулирует сложные мышечные движения. Серотонин ускоряет процессы обуче­ния, формирования болевых ощущений, сенсорное восприятие, засыпание, ангиотензин - повышение АД, торможение син­теза катехоламинов, стимулирует секрецию гормонов; информи­рует ЦНС об осмотическом давлении крови. Олигопептиды -медиаторы настроения, полового поведения; передачи ноцицептив-ного возбуждения от периферии в ЦНС, формирования болевых ощущений. Эндорфины, энкефалины, пептид, вы­зывающий дельта-сон, обусловливают антиболевые реак­ции, повышение устойчивости к стрессу, сон. Простагландины вызывают повышение свертываемости крови, изменение тону­са гладких мышц, усиление физиологического эффекта медиаторов и гормонов. Мозгоспецифичные белки различных отделов голов­ного мозга влияют на процессы обучения.

Согласно принципу Дейла, один нейрон синтезирует и ис­пользует один и тот же медиатор или одни и те лее медиаторы во всех разветвлениях своего аксона. Кроме основного медиа­тора, как выяснилось, в окончаниях аксона могут выделяться и другие - сопутствующие медиаторы, играющие модулирую­щую роль.

Эффект действия медиатора зависит в основном от свойств ионных каналов постсинаптической мембраны. Это явление особенно ярко демонстрируется при сравнении эффектов от­дельных медиаторов в ЦНС и в периферических синапсах орга­низма. Ацетилхолин, например, в коре мозга при микроаппли­кациях на разные нейроны может вызывать возбуждение и тор­можение, в синапсах сердца - торможение, в синапсах гладкой мускулатуры пищеварительного тракта - возбуждение. Катехоламины вызывают возбуждение и торможение в стволе мозга.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 708; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.163.95 (0.014 с.)