Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Структурно-функциональная характеристика синапсовСодержание книги
Поиск на нашем сайте
А. Классификация межнейронных синапсов. Классифицируют такие синапсы по нескольким критериям. 1. По локализации выделяют аксодендритные, аксосоматические, аксоаксонные, дсндро-соматнческие, дендродсндритные синапсы. Функция двух последних форм изучена недостаточно. 2. По эффекту синапсы делят на возбуждающие, т. е. запускающие генерацию ПД, и тормозные, препятствующие возникновению ПД. 3. По способу передачи сигнала различают синапсы химические, электрические и смешанные. Химические синапсы являются специфическим межклеточным контактом для нервной системы. В них передача на постсинаптическую клетку осуществляется с помощью химического посредника - медиатора. Этот тип синапса преобладает в нервной системе человека и других высших позвоночных. Электрические синапсы обнаружены в головном мозге млекопитающих: мезэнцефальном ядре тройничного нерва, вестибулярном ядре Дейтерса (преддверное латеральное ядро), ядренижней оливы продолговатого мозга. Имеются следующие электрические синапсы: аксон - сома, аксон - дендрит, аксон - аксон, дендрит - сома и сома - сома. т. е. как и у химических синапсов. В смешанных синапсах наряду с химической передачей имеются участки с электротоническим механизмом передачи (например, в спинном мозге лягушки). Б. Функциональные элементы химического синапса. 1.Пресинаптическое окончание образуется по ходу разветвления аксона, ин-нервируюшего другую клетку. Главным ультраструктурным фрагментом пресинаптического окончания являются синаптические пузырьки (везикулы) диаметром около 40 нм. Они расположены преимущественно вблизи периодических утолщений синаптической мембраны, называемых активными зонами. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из которых имеется, по подсчетам разных авторов, от 1000 до 10000 молекул химического вещества, участвующего в передаче влияния через синапс и в связи с этим названного медиатором (посредник). Медиатор образуется либо в теле нейрона, попадая в синаптическую бляшку, пройдя через весь аксон, либо непосредственно в синаптической бляшке. В обоих случаях для синтеза медиатора нужны ферменты, образующиеся в теле клетки на рибосомах. Важными структурами пресинаптического окончания являются митохондрии, осуществляющие энергетическое обеспечение процесса синаптической передачи, цистерны гладкого эндоплазматического ретикулу-ма, содержащие депонированный ион Са2+, а также микротрубочки и микрофиламенты, участвующие во внутриклеточном передвижении везикул. Часть мембраны пресинаптического окончания, ограничивающая синаптическую щель, называется пресинаптической мембраной. Через нее осуществляется выброс медиатора в синаптическую щель посредством экзоцитоза. 2. Синоптическая щель имеет ширину 20-50 нм. В ней содержатся межклеточная жидкость и мукополисахаридное вещество в виде полосок, мостиков, которое обеспечивает связь между пре- и пост-синаптической мембранами, могут быть ферменты. 3. Постсипаптическая мембрана - это утолщенная часть клеточной мембраны иннервируемой клетки, содержащая белковые рецепторы, имеющие ионные каналы и способные связать молекулы медиатора, вследствие чего возникает активация ионных каналов. Характеристику электрических синапсов ЦНС см в разделе 4.3.4. 4.3.2. Механизм передачи сигнала в химических синапсах А. Нервный импульс, поступивший в пресинаптическое окончание, вызывает деполяризацию его мембраны, открывающую потенциалзависимые Са-каналы. Ионы Са2+ входят согласно концентрационному и электрическому градиентам внутрь окончания, что ведет к увеличению содержания ионов в цито-золе в 10-100 раз. Ион Са2+ вызывает слияние синаптически.ч пузырьков с внутренней поверхностью пресинаптической мембраны и последующий экзоцитоз содержащегося в них медиатора в синаптическую щель. Выделение молекул медиатора из пресинаптического окончания пропорционально количеству поступивших туда ионов Са2* в степени п=4. Например, при увеличении концентрации ионов Са2+ в 2 раза выход медиатора может увеличиться в 24, т.е. в 16 раз. Один из возможных механизмов участия ионов Са2+ в секреции медиатора состоит в активации (фосфорилировании) специального белка, запускающего этот процесс. Выделение медиатора в синаптическую щель осуществляется в небольшом количестве и в состоянии покоя синапса - 1-2 кванта в секунду. Каждый квант (синаптический пузырек) содержит от 1000 до 10000 молекул. Б. Молекулы медиатора, поступившие в синаптическую щель, диффундируют к постсинаптической мембране и вступают во взаимодействие с ее рецепторами. Скорость диффузии молекул медиатора позволяет им пройти синаптическую щель за 0,1-0,2 мс. Длительность действия медиатора на рецепторы постсинаптической мембраны, определенная по продолжительности открывания ионных каналов в ней, равна 1-2 мс. Удаление медиатора происходит путем диффузии его из щели в окружающую жидкость, обратного захвата пресинаптическим окончанием и разрушением под действием фермента, находящегося в синаптической щели и постсинаптической мембране. Ацетилхолин инактивируется ацетилхолинэстеразой, норадреналин - моноаминоксидазой, катехол-О - метилтрансферазой и т.д. В. Возбуждение постсинаптической мембраны. Выделившийся в синаптическую щель медиатор действует на рецепторы постсинаптической мембраны и повышает ее проницаемость для ионов Ма+ и К+. Канал имеет слабую избирательность в отношении этих ионов, поэтому ионные токи через канал зависят главным образом от концентрационного и электрического градиентов. В связи с этим вход в клетку ионов Ка+, которому способствуют как концентрационный, так и электрический градиенты, преобладает над выходом ионов К+, так как их выходу из клетки препятствует электрический градиент. Это ведет к деполяризации постсинаптической мембраны, называемой возбуждающим постсинаптическим потенциалом (ВПСП). При достижении ВПСП критической величины в нейроне возникает ПД (см. также раздел 4.4). 4.3.3. Особенности проведения возбуждения в химических синапсах 1. Одностороннее проведение возбуждения - в направлении от пресинаптического окончания в сторону постсинаптической мембраны - связано с тем, что медиатор выделяется из пресинаптического окончания, а взаимодействующие с ним рецепторы, имеющие ионные каналы, необходимые для формирования синаптических потенциалов, находятся только на постсинаптической мембране. Поэтому пресинаптическая мембрана нечувствительна к выделившемуся медиатору. ВПСП, возникающий на постсинаптической мембране, не в состоянии возбудить пресинаптическое окончание из-за дальности расстояния. 2. Замедленное проведение сигнала объясняется синаптической задержкой (интервал между приходом импульса к пресинаптической мембране и возникновением ВПСП в нейроне составляет 0,2-0,5 мс). Необходимо время для выделения медиатора из пресинаптического окончания, диффузии его к постсинаптической мембране, возникновения ВПСП. 3. Низкая лабильность синапсов, равная 100-150 передаваемым импульсам в секунду, что в 5-6 раз ниже лабильности аксона. Главной причиной низкой лабильности синапса является сравнительно большая совокупная длительность процессов, обеспечивающих проведение возбуждения от пресинаптической мембраны к нейрону. 4. Проводимость химических синапсов сильно изменяется под влиянием биологически активных веществ, лекарственных средств и ядов. Она легко блокируется и стимулируется. 4.3.4. Электрические синапсы ЦНС Электрические синапсы имеют щель, которая на порядок меньше, чем щель у химических синапсов. Они проводят сигнал в обе стороны без синаптической задержки. Передача сигнала не блокируется при удалении ионов Са2+. Кроме того, электрические синапсы малочувствительны к фармакологическим препаратам и ядам, практически неутомляемы, как и нервное волокно. Контактирующие мембраны нейронов связаны друг с другом полуканалами белковой природы - коннексонами (от англ, соппеаюп - связь). Через коннексоны клетки обмениваются некоторыми компонентами цитоплазмы: аминокислотами, пептидами, РНК, метаболитами, циклическими нуклеотидами. Очень низкое удельное сопротивление сближенных пре- и постсинаптических мембран обеспечивает хо- рошую электрическую проводимость. Определенную роль в обеспечении такой электрической проводимости играют коннексоны. Механизм передачи возбуждения в электрическом синапсе подобен таковому в нервном волокне: ПД, возникающий на пресинаптической мембране, непосредственно раздражает постсинап-тическую мембрану. Работа электрических синапсов может регулироваться близлежащими химическими синапсами. Например, между шипиками клеток ядра нижней оливы продолговатого мозга передача возбуждения блокируется, если выделяется медиатор в рядом расположенном химическом синапсе. Электрические синапсы, как выяснилось, оказывают действие на метаболизм контактирующих клеток. МЕДИАТОРЫ И РЕЦЕПТОРЫ ЦНС Медиаторами ЦНС являются многие химические вещества, разнородные в структурном отношении (в головном мозге обнаружено около 30 биологически активных веществ). По химическому строению их можно разделить на несколько групп, главными из которых являются моноамины, аминокислоты и полипептиды. Достаточно широко распространенным медиатором является ацетилхолин. А. Ацетилхолин. Встречается в различных отделах ЦНС, известен в основном как возбуждающий медиатор: в частности, является медиатором а-мотонейронов спинного мозга, иннервирующих скелетную мускулатуру. С помощью ацетилхолина а-мотонейроны по коллатералям своих аксонов передают возбуждение на тормозные клетки Реншоу. В ретикулярной формации ствола мозга, в гипоталамусе обнаружены М- и К-холинорецепторы. При взаимодействии ацетилхолина с рецепторным белком последний изменяет свою конформацию, в результате чего открывается ионный канал. Тормозное влияние ацетилхолин оказывает с помощью М-холинорецепторов в глубоких слоях коры большого мозга, в стволе мозга, хвостатом ядре. Б. Моноамины. Выделяют катехоламины, серотонин и гистамин. Большинство из них в значительных количествах содержится в нейронах ствола мозга, в меньших количествах они обнаруживаются в других отделах ЦНС. Катехоламины обеспечивают возникновение процессов возбуждения и торможения, например, в промежуточном мозге, черной субстанции, лимбической системе, полосатом теле. С помощью серотонина в нейронах ствола мозга передаются возбуждающие и тормозящие влияния, в коре мозга - тормозящие влияния. Серотонин содержится главным образом в структурах, имеющих отношение к регуляции вегетативных функций. Особенно много его в лимбической системе, ядрах шва. В нейронах названных структур выявлены ферменты, участвующие в синтезе серотонина. Аксоны этих нейронов проходят в бульбоспинальных путях и оканчиваются на нейронах различных сегментов спинного мозга. Здесь они контактируют с клетками преганглионарных симпатических нейронов и со вставочными нейронами желатинозной субстанции. Полагают, что часть этих так называемых симпатических нейронов, а может быть и все, являются серотонинергическими нейронами вегетативной нервной системы. Их аксоны, согласно данным некоторых авторов, идут к органам пищеварительного тракта и стимулируют их сокращение. Гистамин в довольно высокой концентрации обнаружен в гипофизе и срединном возвышении гипоталамуса. В остальных отделах ЦНС уровень гистамина очень низкий. Медиаторная роль его изучена мало. Выделяют Н1- и Н2-гистаминорецепторы. Н1-рецепторы имеются в гипоталамусе и участвуют в регуляции потребления пищи, терморегуляции, секреции пролактина и антидиуретического гормона. Н2-рецепторы обнаружены на глиаль-ных клетках. В. Аминокислоты. Кислые аминокислоты (глицин, у-амино-масляная кислота) являются тормозными медиаторами в синапсах ЦНС и действуют на тормозные рецепторы (см. раздел 4.8). Нейтральные аминокислоты (а-глутамат, а-аспартат) передают возбуждающие влияния и действуют на соответствующие возбуждающие рецепторы. Предполагают, что глутамат может быть медиатором афферентов в спинном мозге. Рецепторы глутаминовой и аспарагиновой аминокислот имеются на клетках спинного мозга, мозжечка, таламуса гиппокампа, коры большого мозга. Полагают, что глутамат - самый распространенный медиатор ЦНС. Г. Полипептиды. В синапсах ЦНС они также выполняют ме-диаторную функцию. В частности, субстанция Р является медиатором нейронов, передающих сигналы боли. Особенно много этого полипептида в дорсальных корешках спинного мозга. Это послужило основанием к предположению, что субстанция Р может быть медиатором чувствительных нервных клеток в области их переключения на вставочные нейроны. Субстанция Р в больших количествах содержится в гипоталамической области. Различают два вида рецепторов субстанции Р: рецепторы типа SР-Р, расположенные на нейронах мозговой перегородки, и рецепторы типа SР-E, расположенные на нейронах коры большого мозга. Энкефалины и эндорфины - медиаторы нейронов, блокирующих болевую импульсацию. Они реализуют свое влияние посредством соответствующих опиатных рецепторов, которые особенно плотно располагаются на клетках лимбической системы; много их также на клетках черной субстанции, ядрах промежуточного мозга и солитарного тракта, имеются они на клетках голубого пятна, спинного мозга. Их лигандами являются (3-эндорфин, динорфин, лей- и мет-энкефалины. Ангиотснзин участвует в передаче информации о потребности организма в воде, люлиберин - в половой активности. Физиологические эффекты действия некоторых медиаторов головного мозга. Норадреналин регулирует настроение, эмоциональные реакции, обеспечивает поддержание бодрствования, участвует в механизмах формирования некоторых фаз сна, сновидений; дофамин - в формировании чувства удовольствия, регуляции эмоциональных реакций, поддержании бодрствования. Дофамин полосатого тела регулирует сложные мышечные движения. Серотонин ускоряет процессы обучения, формирования болевых ощущений, сенсорное восприятие, засыпание, ангиотензин - повышение АД, торможение синтеза катехоламинов, стимулирует секрецию гормонов; информирует ЦНС об осмотическом давлении крови. Олигопептиды -медиаторы настроения, полового поведения; передачи ноцицептив-ного возбуждения от периферии в ЦНС, формирования болевых ощущений. Эндорфины, энкефалины, пептид, вызывающий дельта-сон, обусловливают антиболевые реакции, повышение устойчивости к стрессу, сон. Простагландины вызывают повышение свертываемости крови, изменение тонуса гладких мышц, усиление физиологического эффекта медиаторов и гормонов. Мозгоспецифичные белки различных отделов головного мозга влияют на процессы обучения. Согласно принципу Дейла, один нейрон синтезирует и использует один и тот же медиатор или одни и те лее медиаторы во всех разветвлениях своего аксона. Кроме основного медиатора, как выяснилось, в окончаниях аксона могут выделяться и другие - сопутствующие медиаторы, играющие модулирующую роль. Эффект действия медиатора зависит в основном от свойств ионных каналов постсинаптической мембраны. Это явление особенно ярко демонстрируется при сравнении эффектов отдельных медиаторов в ЦНС и в периферических синапсах организма. Ацетилхолин, например, в коре мозга при микроаппликациях на разные нейроны может вызывать возбуждение и торможение, в синапсах сердца - торможение, в синапсах гладкой мускулатуры пищеварительного тракта - возбуждение. Катехоламины вызывают возбуждение и торможение в стволе мозга.
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 708; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.163.95 (0.014 с.) |