Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Общие сведения и классификация зубчатых передачСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Механизм, в котором два подвижных звена являются зубчатыми колесами, образующими с неподвижным звеном вращательную или поступательную пару, называют зубчатой передачей (рис. 1). Меньшее из колес передачи принято называть шестерней, а большее – колесом, звено зубчатой передачи, совершающее прямолинейное движение, называют зубчатой рейкой (рис. 1, г). Термин «зубчатое колесо» является общим. При одинаковых размерах колес шестерней называют ведущее зубчатое колесо. Параметры шестерни сопровождаются индексом “1”, а колеса – “2”.
Рис. 1. Виды зубчатых передач: а, б, в — цилиндрические зубчатые передачи с внешним зацеплением; г — реечная передача; д — цилиндрическая передача с внутренним зацеплением; е — зубчатая винтовая передача; ж, з, и — конические зубчатые передачи; к — гипоидная передача
В большинстве случаев зубчатая передача служит для передачи вращательного движения. В некоторых механизмах эту передачу применяют для преобразования вращательного движения в поступательное (или наоборот, см. рис. 1, г). Зубчатые передачи — наиболее распространенный тип передач в современном машиностроении и приборостроении. Их применяют для передачи мощностей от долей (механизм кварцевых наручных часов) до десятков тысяч киловатт (крупные шаровые мельницы, дробилки, обжиговые печи) при окружных скоростях до 150 м/с и передаточных числах до нескольких сотен и даже тысяч, с диаметром колес от долей миллиметра до 6 м и более. Основные достоинства зубчатых передач по сравнению с другими передачами: - технологичность, постоянство передаточного числа; - высокая нагрузочная способность (до N=50000 кВт); - высокий КПД (до 0,97-0,99 для одной пары колес); - малые габаритные размеры по сравнению с другими видами передач при равных условиях; - большая надежность в работе, простота обслуживания; - сравнительно малые нагрузки на валы и опоры.
К недостаткам зубчатых передач следует отнести: - невозможность бесступенчатого изменения передаточного числа; - высокие требования к точности изготовления и монтажа; - шум при больших скоростях; плохие амортизирующие свойства; - громоздкость при больших расстояниях между осями ведущего и ведомого валов; - потребность в специальном оборудовании иинструменте для нарезания зубьев; - высокая жесткость, не позволяющая компенсировать динамические нагрузки; - нерациональное использование зубьев – в работе передачи одновременно участвуют обычно не более двух зубьев каждого из зацепляющихся колёс; - зубчатая передача не предохраняет машину от возможных опасных перегрузок. Классификация зубчатых передач Зубчатые передачи и колеса классифицируют по следующим признакам (см. рис. 1): - по взаимному расположению осей колес: с параллельными осями (цилиндрические, см. рис. 1, а—д), с пересекающимися осями (конические, см. рис. 1, ж—и), со скрещивающимися осями (винтовые, см. рис. 1, е, гипоидные,см.рис. 1,к), с преобразованием движения (реечные, см. рис. 1, г); - по расположению зубьев относительно образующих колес: прямозубые (продольная ось зуба параллельна образующей поверхности колеса (рис. 1, а)); косозубые (продольная ось зуба направлена под углом к образующей поверхности колеса (рис. 1, б)); шевронные (зуб выполнен в форме двух косозубых колес со встречным наклоном осей зубьев (рис. 1, в)); с круговым зубом (ось зуба выполнена по окружности относительно образующей поверхности колеса); - по направлению косые зубья бывают правые и левые. - шевронные колеса по виду шеврона бывают с непрерывным шевроном (см. рис. 1,в) и имеющие между полушевронами канавку для выхода режущего инструмента. - по конструктивному оформлению: открытые (бескорпусные) и закрытые (корпусные); Конструктивно зубчатые передачи большей частью выполняют закрытыми в общем жестком и герметичном корпусе, что обеспечивает им высокую точность сборки и защиту от загрязнения. Лишь тихоходные передачи (V<3 м/с) с колесами значительных размеров, нередко встроенные в конструкцию машины (например, в механизмах поворота подъемных кранов, столов станков), изготавливают открытыми. - по окружной скорости: тихоходные (до 3 м/с), для средних скоростей (3—15 м/с), быстроходные (св. 15 м/с); - по числу ступеней: одно- имногоступенчатые; - по расположению зубьев в передаче и колесах: внешнее (зубья направлены своими вершинами от оси вращения колеса (см. рис. 1, а, б, в)), внутреннее (зубья одного из зацепляющихся колес направлены своими вершинами к оси вращения колеса (см. рис. 1, д))и реечное зацепление (одно из колес заменено прямолинейной зубчатой рейкой (см. рис. 1, г)); - по форме профиля зуба: эвольвентные - рабочий профиль зуба очерчен по эвольвенте круга (линия описываемая точкой прямой, катящейся без скольжения по окружности); циклоидальные - рабочий профиль зуба очерчен по круговой циклоиде (линия описываемая точкой окружности, катящейся без скольжения по другой окружности); цевочное (разновидность циклоидального) – зубья одного из колес, входящих в зацепление, заменены цилиндрическими пальцами – цевками; с круговым профилем зуба (зацепление Новикова) – рабочие профили зубьев образованы дугами окружности практически одинаковых радиусов. - по относительной подвижности геометрических осей зубчатых колес: с неподвижными осями колес - рядовые передачи; с подвижными осями некоторых колес - планетарные передачи. - по жесткости зубчатого венца колес, входящих в зацепление: с колесами неизменяемой формы (с жестким венцом); включающая колеса с венцом изменяющейся формы (гибким). - по величине передаточного числа: с передаточным числом u ≥ 1 – редуцирующие (редукторы - большинство зубчатых передач); с передаточным числом u < 1 – мультиплицирующие (мультипликаторы). Реализуемое передаточное число может быть постоянным и ступенчато-регулируемым осевым перемещением колес по валу (в коробках скоростей). - по точности зацепления. Стандартом предусмотрено 12 степеней точности. Практически передачи общего машиностроения изготовляют от шестой до десятой степени точности. Передачи, изготовленные по шестой степени точности, используют для наиболее ответственных случаев. - по назначению различают: силовые передачи, предназначенные для передачи мощности; кинематические передачи, то есть передачи, не передающие значительной мощности, а выполняющие чисто кинематические функции. Из перечисленных выше зубчатых передач наибольшее распространение получили цилиндрические прямозубые и косозубые передачи, как наиболее простые в изготовлении и эксплуатации. Наиболее широкое применение находят редуцирующие зубчатые передачи вращательного движения, в том числе и в многоцелевых гусеничных и колесных машинах (коробки передач, бортовые редукторы, приводы различных устройств). Преимущественное распространение получили передачи с зубьями эвольвентного профиля, которые изготавливаются массовым методом обкатки на зубофрезерных или зубодолбежных станках. Достоинство эвольвентного зацепления состоит в том, что оно мало чувствительно к колебанию межцентрового расстояния. Другие виды зацепления применяются пока ограниченно. Так, циклоидальное зацепление, при котором возможна работа шестерен с очень малым числом зубьев (2-3), не может быть, к сожалению, изготовлено современным высокопроизводительным методом обкатки, поэтому шестерни этого зацепления трудоемки в изготовлении и дороги; новое пространственное зацепление Новикова пока еще не получило массового распространения, вследствие большой чувствительности к колебаниям межцентрового расстояния. Прямозубые колёса (около 70%) применяют при невысоких и средних скоростях, когда динамические нагрузки от неточности изготовления невелики, в планетарных, открытых передачах, а также при необходимости осевого перемещения колёс. Косозубые колёса (более 30%) имеют большую плавность хода и применяются для ответственных механизмов при средних и высоких скоростях. Шевронные колёса имеют достоинства косозубых колёс плюс уравновешенные осевые силы и используются в высоконагруженных передачах. Конические передачи применяют только в тех случаях, когда это необходимо по условиям компоновки машины; винтовые — лишь в специальных случаях. Колёса внутреннего зацепления вращаются в одинаковых направлениях и применяются обычно в планетарных передачах. Ориентировочное значение необходимой вязкости масла, выбираемого для смазывания зубчатых передач, имеющих стальные колеса, можно определить по данным рис.14.5 (заштрихованная зона на рис. 14.5) в зависимости от фактора χ3n , определяемого по следующей формуле: где Н HV – твердость по Виккерсу активных поверхностей зубьев (соотношения твердостей HRC...HB и HB...HV см. рис. 14.3 и 14.4); σH – рабочие контактные напряжения, возникающие в зубе при действии номинальной нагрузки, МПа; V – окружная скорость колёс, м/c. Модулем зубьев т называется часть диаметра делительной окружности, приходящаяся на один зуб. Модуль является основной характеристикой размеров зубьев. Для пары зацепляющихся колес модуль должен быть одинаковым. Линейную величину, в 𝜋 раз меньшую окружного шага зубьев, называют окружным модулем зубьев и обозначают т: Для определения основных параметров зубчатой передачи принимают делительный радиус. Если межосевое расстояние в передаче равно сумме делительных радиусов, то начальные и делительные окружности в этом случае совпадают. В дальнейшем рассматривается именно такой частный случай зацепления. Высота зуба h — радиальное расстояние между окружностями вершин и впадин зубчатого колеса: H=ha+hf. Головка зуба — его часть, расположенная между делительной окружностью цилиндрического зубчатого колеса и окружностью вершин зубьев; h — высота головки зуба. Ножка зуба — часть зуба, расположенная между делительной окружностью и окружностью впадин (высота ножки зуба hf). Радиальный зазор — расстояние между поверхностями вершин зубьев и впадин шестерни и колеса: c=hf-ha. Окружная толщина зуба st — расстояние между разноименными профилями зуба по дуге концентрической окружности зубчатого колеса. Ширина венца b — наибольшее расстояние между торцами зубьев цилиндрического зубчатого колеса по линии, параллельной его оси. Межосевое расстояние a ω — расстояние между осями зубчатых колес передачи.
Рис. 16Рис.17
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 1901; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.184.136 (0.013 с.) |