Виды шпонок: призматическая, сегментная, клиновая 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды шпонок: призматическая, сегментная, клиновая



Призматические шпонки. Расчет на срез и смятие

Момент с вала на ступицу передается боковыми гранями шпонки. На этих боковых гранях возникают напряжения смятия см, а в продольном сечении шпонки – напряжения среза ср.
Сечение шпонки подбирают по известному диаметру вала d из стандарта, а длину принимают на 5…10 мм меньше длины ступицы. Затем проверяют прочность соединения на смятие по формуле:
,
где Ft - окружная сила, Н; Aсм - площадь смятия, мм2; Mk - крутящий момент, Н х м; d – диаметр вала, мм; k – глубина врезания шпонки в ступицу, мм; h – высота шпонки, мм; t1 – глубина паза на валу, мм; lp – расчетная длина шпонки, мм; [ см] – допускаемые напряжения смятия, МПа.

На срез стандартные шпонки не проверяют, так как размеры поперечного сечения b и h подобраны таким образом, что нагрузку соединения ограничивают не напряжения среза, а напряжения смятия. При необходимости проверки на срез используют следующую формулу:
,
где b – ширина шпонки, мм; [ ср] – допускаемое напряжение на срез, МПа.
В тех случаях, когда одна шпонка не может передать заданного момента, устанавливают две или три шпонки. Однако, следует учитывать, что установка нескольких шпонок связана с технологическими затруднениями, а также ослабляет вал и ступицу. Поэтому многошпоночные соединения практически не применяют. Их заменяют зубчатыми соединениями.

 

Материал шпонок

Стандартные шпонки изготовляют из конструкционной углеродистой стали с пределом прочности не менее 500 МПа. Чаще всего применяют стали марок Ст6; 45; 50; 60.


 

 

1.4 Ременные и цепные передачи, области применения, расчеты.

Ременная передача относится к передачам трением с гибкой связью. Состоит из ведущего и ведомого шкивов, огибаемых ремнем рис.2.6.1. Нагрузка передается силами трения, возникающими между шкивом и ремнем вследствие натяжения последнего.

Рисунок 2.6.1 Геометрические параметры ременной передачи

 

Область применения ременных передач

Ременные передачи применяют в большинстве случаев для передачи движения от электродвигателя, когда по конструктивным соображениям межосевое расстояние а должно быть достаточно большим, а передаточное число и не строго постоянным (в приводах станков, транспортеров, дорожных и строительных машин и т. п.). Мощность, передаваемая ременной передачей, обычно до 50 кВт и в редких случаях достигает 1500 кВт. Скорость ремня u = 5...50 м/с, a в сверхскоростных передачах может доходить до ~100 м/с.

Ограничение мощности и нижнего предела скорости вызвано большими габаритами передачи. В сочетании с другими передачами ременную передачу применяют на быстроходных ступенях привода.

7.3 Классификация ремённых передач

В зависимости от формы поперечного сечения ремня передачи (рис.2.6.2) бывают:
1) плоскоременные (рис.2.6.2.а),
2) клиноременные (рис.2.6.2.б),
3) круглоременные (рис.2.6.2.в),
4) поликлиноременные (рис.2.6.2.г).

В современном машиностроении наибольшее применение имеют клиновые и поликлиновые ремни. Передача с круглым ремнем имеет ограниченное применение (швейные машины, настольные станки, приборы).

Достоинства ремённых передач

1. Простота конструкции и малая стоимость.
2. Возможность передачи мощности на значительные расстояния (до 15 м).
3. Плавность и бесшумность работы.
4. Смягчение вибрации и толчков вследствие упругой вытяжки ремня.

Недостатки ремённых передач

1.Большие габаритные размеры, в особенности при передаче значительных мощностей.
2. Малая долговечность ремня в быстроходных передачах.
3. Большие нагрузки на валы и подшипники от натяжения ремня.
4. Непостоянное передаточное число из-за неизбежного упругого проскальзывания ремня.
5. Неприменимость во взрывоопасных местах вследствие электризации ремня.

Геометрические соотношения в ременной передаче

1. Межосевое расстояние а (рис. 2.6.1) определяется конструкцией привода для плоскоременных передач:
для клиноременных и поликлиноременных передач: ,
где d1 и d2 — диаметры шкивов;
h — высота сечения ремня.


2. Расчетная длина ремня L равна сумме длин прямолинейных участков и дуг обхвата шкивов

(2.6.3)

При наличии сшивки длину ремня увеличивают на L= 100...400 мм.

3. Угол обхвата ремнем малого шкива

 

(2.6.4)


Для плоскоременной передачи - , для клиноременной и поликлиноременной - .

 

 

Передаточное отношение

Поэтому передаточное число ременной передачи определяется по формуле: (2.6.5).

Расчёт на долговечность выполняют как проверочный.

(2.6.6)

где - максимальное напряжение цикла; С – опытная постоянная, - число циклов нагружения за полный срок службы (до усталостного разрушения). Частота цикла напряжений равна частоте пробегов ремня:
(2.6.7)

где U – действительная частота пробегов ремня,
с-1 - скорость ремня, м/с; Lp – длина ремня, м;
[U] – допускаемая частота пробегов ремня, с-1, при которой не появляется признаков усталостного разрушения.

Назначение и область применения цепных передач

Цепная передача относится к передачам зацеплением с гибкой связью. Цепные передачи применяют в станках, транспортных, сельскохозяйственных и других машинах для передачи движения между параллельными валами, расположенными на значительном расстоянии, когда зубчатые передачи непригодны, а ременные ненадежны. Наибольшее применение получили цепные передачи мощностью до 120 кВт при окружных скоростях до 15м/с. Она состоит из ведущей и ведомой звездочек и огибаемой их приводной цепи. К.П.Д. передачи зависит от потерь на трение в шарнирах цепи, на зубьях звездочек и на перемешивание масла при смазывании погружением - .

Рисунок 2.7.1 Цепная передача роликовой цепью а), зубчатой цепью б)

 


Достоинства цепных передач

1. Передача движения зацеплением, а не трением позволяет передавать большие мощности, чем с помощью ремня;
2. Практически не требуется натяжение цепи, следовательно, уменьшается нагрузка на валы и опоры;
3. Отсутствие скольжения и буксования обеспечивает постоянство среднего передаточного отношения;
4. Цепи могут устойчиво работать при меньших межосевых расстояниях и обеспечить большее передаточное отношение, чем ремённая передача;
5. Цепные передачи хорошо работают в условиях частых пусков и торможений;
6. Цепные передачи имеют высокий КПД.

8.3 Недостатки цепных передач

1. Износ цепи при недостаточной смазке и плохой защите от грязи;
2. Сложный уход за передачей;
3. Повышенная вибрация и шум;
4. По сравнению с зубчатыми передачами повышенная неравномерность движения;
5. Удлинение цепи в результате износа шарниров и сход цепи со звёздочек.

Классификация цепей

Главный элемент цепной передачи – приводная цепь, которая состоит из соединенных шарнирами звеньев.
Основными типами приводных цепей являются втулочные, роликовые и зубчатые, которые стандартизованы и изготовляются специализированными заводами.
Цепи должны быть износостойкими и прочными. Их изготавливают из сталей 50, 40Х.
Передаточное число цепной передачи:
Геометрические соотношения и передаточное число цепной передачи

1) шаг «р» цепи является основным параметром цепной передачи. Он принимается по ГОСТу. Чем больше шаг, тем выше нагрузочная способность цепи. Но при этом сильней удар звена о зуб в период набегания на звездочку, меньше плавность, бесшумность и долговечность передачи. При больших скоростях применяют цепи с малым шагом.
2) оптимальное межосевое расстояние принимают из условия долговечности цепи:
3) длина цепи ,
ее измеряют числом шагов или звеньев. Для нормальной работы передачи ведомая ветвь должна иметь небольшое провисание, для чего межосевое расстояние уменьшают на (0,002…0,004)а…

По мере работы передачи стрела провисания ведомой ветви увеличивается. Регулировка натяжения цепи осуществляется нажимными роликами или оттяжными звездочками. Натяжные устройства должны компенсировать удлинение цепи в пределах двух звеньев, при большем удлинении два звена цепи удаляют.

При проектировочном расчёте предварительно определяют шаг цепи по формуле:

,

где Кэ = КдКсК0КрегКр коэффициент эксплуатации;
Кд – коэффициент динамичности;
Кс – коэффициент смазывания передачи;
К0 – коэффициент наклона передачи к горизонту;
Крег – коэффициент способа регулирования;
Кр – коэффициент режима нагрузки;
Т1 – вращающий момент на ведущей звёздочке;
[p] – допускаемое среднее давление в шарнире;
m – число рядов цепи;
z1 = 29 – 2u – минимальное число зубьев ведущей звёздочки цепи.

После подбора цепи по стандарту выбранная передача проверяется на износостойкость по формуле:
(2.7.3),

где - окружная сила, d1 - делительный диаметр звездочки; – площадь проекции опорной поверхности шарнира, d0 – диаметр оси рис. 2.7.5, В – длина втулки.

Рисунок 2.7.5 К расчету цепи

 

1.5 Зубчатые передачи, области применения, расчеты.



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 409; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.221.67 (0.032 с.)