Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дискретная модель стержневой системыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Выбор дискретной расчетной модели стержневой системы начинается с разбиения расчетной схемы на элементы – на стержни постоянного сечения. В плоской стержневой системе эти элементы могут соединяться в шарнирном или жестком узлах (рис. 12.1): шарнирный узел жесткий узел Рис. 12.1 Здесь u1, u2, u3 – независимые перемещения узла (u1, u2 – линейные перемещения, u3 – угловое перемещение). У шарнирного узла число независимых перемещений равно двум, а у жесткого – трем. Они называются степенями свободы узла. Общее число степеней свободы дискретной модели определяется суммой чисел степеней свободы отдельных узлов. Если обозначить его через n, а все перемещения узлов пронумеровать рядом натуральных чисел от 1 до n и объединить в единый вектор, получим . Он называется вектором перемещений дискретной модели. Если в расчетной схеме имеются стержни переменного сечения, их следует представить в виде нескольких стержней постоянного сечения, а в места скачков сечений необходимо вводить узлы. В системах с криволинейными стержнями (в арках, кольцах и др.) криволинейные элементы следует заменять ломаной фигурой – многоугольником. В дискретном методе нагрузка может быть приложена только в узлах. Однако в расчетной схеме нагрузка может быть и распределенной, и приложенной в виде сосредоточенных сил в точках, не совпадающих с узлами. Такие нагрузки следует переносить в соседние узлы как узловые силы, действующие в направлении степеней свободы дискретной модели. В результате этого формируется вектор внешней нагрузки . Внутренние усилия и деформации, которые требуется определить, также собираются в отдельные вектора , , где S – вектор усилий, Δ – вектор деформаций, m – число усилий. Внешнюю нагрузку в узлы можно переносить по-разному. В качестве примера рассмотрим три варианта переноса распределенной нагрузки q, действующей на балку (рис. 12.2 а), в узел расчетной модели, введенной в середине этой балки (рис. 12.2 б). Рис. 12.2 а) Статически эквивалентный перенос Поделим балку на два участка, а распределенную в них нагрузку учтем как давления ql/4 на концы участков балки (рис. 12.2 в). Давления на концы балки воспринимаются ее опорами, поэтому их можно не учитывать. Объединив оставшиеся две силы в середине балки, получим статически эквивалентную нагрузку, приложенную в середине балки: . б) Перенос с сохранением энергии Решение этой задачи подробно рассматривать не будем. Отметим только, что для этого необходимо приравнять энергии рассматриваемой балки (рис. 12.2 а) и балки с сосредоточенной силой (рис. 12.2 б). В результате получается «точный» результат: . в) Перенос по таблице метода перемещений Для этого следует исключить перемещения узла введением дополнительных связей и по таблице метода перемещений определить возникающие реакции во введенных связях (рис. 12.2 г). Если эти реакции сложить и приложить в обратном направлении (рис. 12.2 д), получим величину эквивалентной нагрузки: . Теперь сравним три варианта расчета. Конечно, вариант б) дает точный результат. Однако он сложен для реализации. Вариант а) наиболее прост, но дает неточный результат. Поэтому в дальнейшем будем пользоваться вариантом в), вполне простым для использования и дающим вполне точный результат. В качестве примера рассмотрим следующую раму (рис. 12.3 а) и выберем ее расчетную модель (рис. 12.3 б). Для переноса нагрузок P и q в двух элементах рамы в узлы расчетной модели воспользуемся таблицей метода перемещений. Соответствующие схемы показаны на рис. 12.3 в, г. Полученные реакции с обратным знаком переносим в узлы выбранной расчетной модели (рис. 12.3 б). Рис. 12.3
|
||||||||||||||
Последнее изменение этой страницы: 2017-01-26; просмотров: 439; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.100.101 (0.01 с.) |