Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение нитратов в экстрактах пищевого сырьяСодержание книги
Поиск на нашем сайте
В настоящей работе используется ионоселективный мембранный электрод. Корпус электрода заполняется приэлектродным раствором с молярной концентрацией 10-1 моль/см3 KNO3 и 5. 10-3 моль/см3 KCl. Принцип работы электрода основан на том, что при погружении электрода в р-р происходит обмен ионами между поверхностью ионочувствительной мембраны и раствором. Между поверхностью мембраны и измеряемым раствором возникает разность потенциалов, значение которой пропорционально-lgCNO - или pNO3 измеряемого раствора. Потенциал электрода измеряют по отношен к вспомогательному электроду сравнения (например ЭВЛ 1МЗ), в комплекте с рН-, милливольтметрами, высокоомными измерительными преобразователями, иономерами и рН 121. Контролируемая среда не должна образовывать пленок и осадков на рабочей части (мембране) электрода и не должна содержать ионы Br- и J-. Допускается применение электрода в средах, образующих легкосмываемые водой осадки. Электрод селективен в присутствии ионов Cl-, HCO3-, CH3COO-, F-, SO42-, соответственно при концентрациях не превышающих концентрацию ионов NO3- в 100, 500, 500, 1000 раз. Индикаторный электрод ЭМ –NO3- - 0.1 и хлорсеребряный электрод сравнения погружают в исследуемый раствор, подключают электроды к иономеру ЭВ-74. Диапазон линейности электродной характеристики электрода соблюдается от 0.35 до 4.0 pNO3 при прямых потенциометрических измерениях и от 0.17 до 5.0 pNO3 при потенциометрическом титровании, причем рН контролируемых сред от 2 до 9. Отклонение электродной характеристики от линейности в диапазоне 0,35 до 4,0 pNO3 не превышает +12 мв. Для этого используют контрольные растворы для калибровки электродов.
1 моль/дм3 KNO3 1 . 10-3 моль/дм3 KNO3 1 . 10-1 моль/дм3 KNO3 1 . 10-4 моль/дм3 KNO3 1 . 10-2 моль/дм3 KNO3
Перед калибровкой промыть три раза измерительный электрод в дистиллированной воде при перемешивании, меняя воду через каждые 5 мин. Затем электрод дважды промыть контрольным раствором, с которого предусмотрено начать калибровку. Калибровку производить от низших концентраций к высшим. При переходе к растворам высшей концентрации электрод промыть контрольным раствором. Подготовленные электроды помещают в исследуемый раствор и снимают показания со шкалы иономера ЭВ-74 в мв не менее, чем через 1 мин, после прекращения дрейфа показаний прибора. Температура анализируемых проб и растворов сравнения должна быть одинаковой. Результаты калибровки электрода вносят в таблицу 2. Таблица 2 Значения pNO3 (-lgCNO3-) контрольных растворов при температуре от 0 до 50º С и потенциал электрода (мв) в растворе KNO3 1.10-3 моль/кг
По полученным данным строят градуировочный график в координатах Е, МВ – pNO3.На оси абсцисс откладывают значение pNO3, на оси ординат Е, мв. Допустимое отклонение точек от прямой, характеризующей электродную функцию, не должно превышать ±6мв. По графику определяется крутизна характеристики – число милливольт на единицу рNO3 – мв/рNO3. Крутизна электродной характеристики составляет 56,5+3,0 МВ/pNO3 при температуре 25ºС. Откалиброванный электрод в паре с электрод сравнения готов к работе. Перед определением концентрации нитрат- ионов в исследуемых пробах проводят настройку прибора ЭВ-74 по двум растворам, соответствующим началу и концу измеряемого диапазона pNO3. После этого приступают к измерениям неизвестной концентрации нитратов в исследуемых образцах. Подготовка пробы анализируемого образца: клубни картофеля, огурцы, капуста, свекла, томаты, фрукты, бахчевые культуры, зерно. Анализируемыеобразцы овощей, фруктов, бахчевых культур измельчают на терке до размера частиц не более 1 см. Зерно измельчают на лабораторной электрической мельнице. К 1 г измельченного анализируемого образца приливают 50 мл 1% раствора алюмо–калиевых квасцов и гомогенизируют в течение 3 минут. (При отсутствии гомогенизатора проводят экстракцию на встряхивателе в течение 5 минут). В полученную суспензию погружают электроды и измеряют Е, МВ. По градуировочному графику определяют pNO3-. Находят С(NO3-) моль/дм3 Рассчитывают содержание нитратов в мг/кг Х= (мг/кг); где: Н-навеска пробы, г. Чувствительность метода 6мг/кг По окончании работы электрод промывают в дистиллированной воде. Электрод ЭМ-NO3-01 хранят в растворе 0,1 KNO3. Если перерыв в работе составляет более 5 дней, электрод хранят на воздухе. Электрод сравнения хранят в дистиллированной воде.
К О Н Д У К Т О М Е Т Р И Я
Кондуктометрический метод анализа основан на измерении электрической проводимости (электропроводности) растворов электролитов. Растворы электролитов обладают способностью проводить электрический ток под действием электрического поля. Двигающиеся в растворе ионы в поле электрического тока испытывают тормозящее действие со стороны молекул растворителя и окружающих противоположно заряженных ионов. Это так называемый релаксационный и электрофоретический эффекты. Результатом такого тормозящего действия является сопротивление раствора прохождению электрического тока. Электропроводность раствора W обратна его электрическому сопротивлению R: W = (1) где W – электропроводность раствора, Ом-1 или См (сименс), R – электрическое сопротивление раствора, Ом Для измерения электропроводности растворов используются электроды, погруженные в этот раствор. Сопротивление раствора обратно пропорционально площади электродов S (см2) и прямо пропорционально расстоянию между ними (см): R = (2) где - коэффициент пропорциональности, называемый удельным сопротивлением, Ом . см; Если принять = 1 см, S = 1 см2, то R = . При этих условиях удельное сопротивление равно сопротивлению 1 см3 раствора. В аналитических целях величина “электропроводность – W” как таковая используется крайне редко, поскольку электропроводность любого проводника – раствора или металла – зависит от его размеров и форм. Чтобы не учитывать зависимость электропроводности от размеров проводника, пользуются понятием “удельная электропроводность ”. Удельная электропроводность (Ом-1 . см-1 или См . см-1) является величиной, обратной удельному сопротивлению: = (3) Удельная электропроводность характеризует только проводящую среду, т.к. она не зависит от геометрии проводника. Удельная электропроводность соответствует электропроводности раствора объемом в 1 см3, находящегося между электродами площадью 1 см2, расположенным на расстоянии 1 см друг от друга.х) Для разбавленных растворов удельная электропроводность изменяется пропорционально концентрации. Поэтому в расчетах удобно пользоваться эквивалентной электропроводностью. Эквивалентной электропроводностью называют проводимость раствора, содержащего 1 моль эквивалента вещества и находящегося между двумя параллельными электродами, расстояние между которыми 1 см. Единицей измерения является См.см2/моль экв. (СИ). Удельная и эквивалентная проводимость взаимно связаны соотношением: = , (4) где С – молярная концентрация эквивалента, моль/л. Подвижность ионов имеет постоянное максимальное значение при бесконечном разбавлении раствора, поэтому эквивалентная электропроводность раствора электролита при бесконечном разбавлении представляет собой постоянную величину, равную сумме подвижностей ионов при бесконечном разбавлении: 0 = 0+ + 0- (5) где 0+ , 0- - предельная электропроводность (подвижность) ионов. Если ион несет более одного заряда, то значение подвижности иона относят к одному заряду. Когда в растворе присутствует больше, чем два вида ионов или смеси любых электролитов, эквивалентная электропроводность определяется уравнением Кольрауша: = (6) Закон аддитивности электрической проводимости растворов электролитов при бесконечном разведении где: С – общая концентрация электролита, Сi –концентрация, I – ого вида ионов, Zi - заряд ионов, - ионные электрические проводимости (их величины указаны в книге Дж.Плэмбека “Электрохимические методы анализа”, М., “Мир”, 1985) х) Примечание - Формулы, обозначения и размерности некоторых величин в системах СИ и СГС сведены в таблицу 3. Таблица 3
Аномально высокая подвижность ионов водорода и гидроксида в водных растворах объясняется особым механизмом передвижения этих ионов. Известно несколько методов кондуктометрического анализа. Методом прямой кондуктометрии концентрация вещества определяется по электрической проводимости раствора, если между ними существует прямая пропорциональность и, в основном, для анализа однокомпонентных систем. Прямую кондуктометрию используют сравнительно редко, поскольку регистрируемый аналитический сигнал избирателен: электропроводность-величина аддитивная, определяемая наличием всех ионов в растворе. Прямые кондуктометрические измерения успешно используют, например, для оценки чистоты растворителя, речных и минеральных вод, а также для определения констант диссоциации электролитов, состава и константы устойчивости комплексных соединений, растворимости малорастворимых электролитов. Большое распространение в аналитической практике получил метод кондуктометрического титрования, основанный на использовании химической реакции, в результате которой происходит заметное изменение электропроводности раствора. При кондуктометрическом титровании могут быть использованы химические реакции всех типов. Кондуктометрическое титрование обладает рядом достоинств: возможно дифференцированное титрование смесей ряда кислот или оснований, титрование мутных, окрашенных растворов, а также возможно титрование при образовании гидролизующихся солей. Нижний предел определяемых концентраций 10-4 моль/л, погрешность определений 2%. При кондуктометрическом титровании происходит замещение ионов, находящихся в анализируемом растворе и участвующих в реакции с титрантом, ионами титранта, подвижностью которых больше или меньше подвижности ионов анализируемого раствора. Этим обусловлено получение восходящих или нисходящих ветвей кривых кондуктометрического титрования. Точность установления точки эквивалентности определяются углом пересечения прямых: угол должен быть как можно меньше, так как только в этом случае наблюдается излом на кривой титрования. Наиболее острый угол пересечения прямых получается при кислотно-основном титровании, так как ионы Н+ и ОН- вносят особенно большой вклад в электропроводность раствора. Наряду с реакциями кислотно-основного взаимодействия в кондуктометрии можно применять реакции осаждения, комплексообразования, окисления-восстановления. В кислотно-основном титровании возможны следующие случаи (см. рис.9, 10, 11). Рис.10. Кривые титрования слабой кислоты а) сильным основанием, б.) слабым основанием
При осадительном титровании катион или анион анализируемого раствора образует осадок с анионом (или соответственно катионом) титранта. Кондуктометрическое титрование обладает рядом преимуществ. Его можно проводить в мутных и окрашенных средах, а также в присутствии окислителей и восстановителей, ограничивающих применение кислотно-основных индикаторов. Метод обладает повышенной чувствительностью и позволяет анализировать разбавленные растворы (до 10-4); более точно устанавливается конечная точка при титровании слабых кислот и оснований. РАБОТА № 11
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 904; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.7.53 (0.008 с.) |