Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Перспективные картографические проекции

Поиск

Перспективные проекции применяются для составления некоторых справочных и вспомогательных карт (обзорные карты обширных районов, ортодромические карты, ледовые карты и пр.).

Эти проекции представляют собой частный случай азимутальных проекций.

(Азимутальные проекции – проекции, в которых меридианами являются радиальные прямые, исходящие из одной точки (центральной точки) под углами, равными соответствующим углам в натуре, а параллели – концентрические окружности, проведенные из точки схождения меридианов).

Рис. 10.3. Перспективные проекции

В перспективных проекциях (рис. 10.3) поверхность Земли (сферы) переносится на картинную плоскость методом проецирования с помощью пучка прямых, исходящих из одной точки – точки зрения (ТЗ).

Картинная плоскость может отстоять от поверхности сферы на некотором расстоянии (КП1), касаться сферы (КП2), или пересекать ее.

Точка зрения (т. О) лежит в одной из точек на перпендикуляре к картинной плоскости, проходящем через центр сферы.

Точку пересечения картинной плоскости с перпендикуляром называют центральной точкой карты (ЦТ).

В зависимости от положения точки зрения (ТЗ) одна и та же точка (т. К0) будет отстоять на различных расстояниях r от ЦТ карты, что и будет определять характер искажений, присущих данной проекции.

Наиболее распространенными перспективными проекциями являются – гномоническая (центральная) и стереографическая.

В гномонической проекции точка зрения (ТЗ) совпадает с центром сферы (ТЗ ® в т. О1).

Сетка меридианов и параллелей карты строится по формулам, связывающим прямоугольные координаты точек с их географическими координатами.

В зависимости от положения центральной точки (ЦТ) карты, гномоническая проекция может быть (рис. 10.4):

а) ® нормальной (полярной) – если центральная точка (ЦТ) совмещена с географическими полюсом (рис. 10.4 а);

б) ® экваториальной (поперечной) – если центральная точка (ЦТ) расположена на экваторе (рис. 10.4 б);

в) ® косой – если центральная точка (ЦТ) расположена в некоторой промежуточной широте (рис. 10.4 в).

 

а) б) в)

 

Рис. 10.4. Гномонические проекции

 

Общие свойства карт в гномонической проекции:

1) ® большие искажения как формы, так и размеров фигур, возрастающие по мере удаления от центральной точки (ЦТ) карты, поэтому измерение расстояний и углов на такой карте затруднено.

Измеряемые по карте углы и расстояния, называемые гномоническими, могут довольно значительно отличаться от истинных значений, вследствие чего для точных измерений карты в данной проекции не применяются;

2) ® отрезки дуги большого круга (ортодромии) изображаются прямыми линиями, что позволяет использовать гномоническую проекцию при построении ортодромических карт.

Карты в гномонической проекции строятся, как правило, в мелких масштабах для участков поверхности Земли меньше полушария, а сжатие Земли не учитывается.

В стереографической проекции картинная плоскость касается поверхности сферы, а точка зрения (ТЗ) расположена в т. О2 (рис. 10.3), являющейся антиподом точки касания. Эта проекция равноугольная, однако, для решения навигационных задач она неудобна, так как основные линии – локсодромия и ортодромия – изображаются в этой проекции сложными кривыми.

Стереографическая проекция является одной из основных для построения справочных и обзорных карт обширных территорий.

Равноугольная картографическая проекция Гаусса

Общие положения

Равноугольная проекция Гаусса применяется для составления топографических и речных карт, а также и планшетов.

Основной картографической сеткой этой проекции является сетка прямоугольных координат.

В прямоугольной системе координат проекции Гаусса вся поверхность земного эллипсоида разбита на 60 6-ти градусных зон, ограниченных меридианами, каждая из которых имеет свое начало координат – точку пересечения осевого меридиана зоны с экватором.

Рис. 10.5. Равноугольная проекция Гаусса

 

Счет зон введется от Гринвичского меридиана к Е от № 1 до № 60. Любую заданную точку в пределах зоны (т. А – рис. 10.5) получают в пересечении 2-х координатных линий:

1) ® дуги эллипса nAn ¢, параллельной осевому меридиану зоны и

2) ® кратчайшей линии АА ¢, проведенной из данной точки А перпендикулярно осевому меридиану.

За начало координат в каждой зоне принимается точка пересечения осевого меридиана с экватором.

Удаление точки А ¢ (основание перпендикуляра) от экватора определяется абсциссой Х, а удаление малого круга nn ¢ от осевого меридиана – ординатой У.

Абсциссы Х во всех зонах отсчитываются в обе стороны от экватора («+» ® к N).

Ординате У приписывается знак «плюс» (+), когда заданная точка удалена к Е (востоку) от осевого меридиана зоны, и знак «минус» (–), когда заданная точка удалена от осевого меридиана к W (западу).

Для определения отечественного номера зоны, в которой расположена заданная точка с долготой l, применяют формулу:

(10.16)

(ближайшее целое число от 1 до 60).

Деление долготы l производится до ближайшего целого числа (для l = 55° Е ® n = 10).

Для вычисления долготы L0 осевого меридиана зоны применяют формулу:

(10.17)

(для n = 10 ® L0 = 57° Е).

При западной долготе: l = 58° W ® l = 360° – 58° = 302° Е ® n = 51, а

L0 = 303° Е или 57° W.

Nмеждународная нумерация зон (от меридиана 180° к востоку).

Для : N = n + 30 и n = N – 30 (для восточного полушария).

Для : N = n – 30 и n = N + 30 (для западного полушария).

В табл. 2.31 а «МТ-2000» указаны значения отечественных (n) и международных (N) номеров долготных зон, их границы и долгота () осевого меридиана ® см. табл. 10.1.

Прямоугольная система координат применяется при производстве топографических работ, составлении топографических карт, расчете направлений и расстояний между точками при малых расстояниях.

Граничными линиями карты в проекции Гаусса служат меридианы и параллели.

Положение заданной точки на карте определяют указанием плоских прямоугольных координат Х и У.

Этим координатам соответствуют километровые линии:

Х = const – параллельна экватору, и

У = const – параллельная осевому меридиану зоны.

Плоские координаты Х и У являются функциями географических координат точки и в общем виде могут быть представлены выражениями:

(10.18)

где l – разность долгот заданной точки и осевого меридиана, т.е.

(10.19)

Вид функций f1 и f 2 выводится так, чтобы обеспечивалось свойство равноугольности проекции при постоянном масштабе вдоль осевого меридиана зоны.

Километровые линии – линии одинаковых значений абсцисс X = const или ординат Y = const, выраженные целым числом км.

Километровые линии (X = const и У = const) ® два семейства взаимно перпендикулярных прямых и оцифровываются соответствующими значениями координат в км. На картах в проекции Меркатора линии X изображаются кривыми, обращенными выпуклостью к полюсу, а линии Y – кривыми, выпуклостью к осевому меридиану и расходящимся по мере удаления от экватора.

Для исключения отрицательных значений ординат оцифровка осевого меридиана увеличена на 500 км.

(При Х = 6656 и У = 23612 ® заданная точка удалена от экватора по осевому меридиану на 6656 км, находится в 23-й зоне и имеет условную ординату 612, а фактически ® 112 км к Е).

Прямоугольные координаты Х и У выражают обычно в метрах.

Рамки карт в проекции Гаусса разбиты на минуты по широте и долготе. Значения широт и долгот параллелей и меридианов, ограничивающих карту, надписываются в углах рамки.

Меридианы и параллели на карту не наносятся. При необходимости их можно провести через соответствующие деления минут широты и долготы на рамках карты.

Угол между километровой линией У = const и истинным меридианом называется сближением или схождением меридианов. Этот угол (Ð g) отсчитывается от северной части истинного меридиана по часовой стрелке до северной части километровой линии У = const (см. рис. 10.6).

Схождению меридианов приписывают знак «плюс» (+), если заданная точка расположена к Е (востоку) от осевого меридиана, и знак «минус» (–), если она расположена к W (западу) от осевого меридиана зоны.

При известных координатах j и l заданной точки угол g вычисляется по формуле:

(10.20)

где L0 – долгота осевого меридиана зоны.

Пример: для точки j = 56°20¢ N; l = 124°51¢ E: n = 21

L0 = 123° E и g = +1°32,4¢.

Ввиду ограниченной ширины зоны кратчайшие линии на картах в проекции Гаусса, изображаются практически прямыми линиями, а масштаб по всей карте постоянен.

Эти свойства, а также наличие сетки прямоугольных координат являются главными причинами широкого применения данной проекции при всех топографических, геодезических и гидрографических работах.

Для решения задач, связанных с использованием как географических, так и прямоугольных координат точек, а также с прокладкой отрезков локсодромий, применяются карты, составленные в нормальной проекции Меркатора с дополнительно нанесенной сеткой прямоугольных координат Гаусса. Основные свойства таких карт полностью соответствуют таковым для нормальной проекции Меркатора.

 

Планшеты в проекции Гаусса

Планшеты в проекции Гаусса составляют в крупных масштабах (от 1:50.000). Границами планшета являются километровые линии, координаты которых: XS, XN, УЕ, УW пишут вдоль линий.

На рамках планшета наносят выходы километровых линий, соответствующих целому числу км.

Для прокладки курсов и пеленгов на планшетах проводят несколько истинных меридианов через 10¸15¢ по долготе.

Линии курсов прокладывают, отсчитывая углы от ближайших к месту судна, меридианов, а линии пеленгов – от меридианов (ближайших) тех точек, в которых измерялись пеленги.

Для прокладки пройденных судном расстояний вблизи одной из боковых рамок строится шкала стандартных морских миль (или S переводится в км).

Направления на картах или планшетах в проекции Гаусса часто определяют относительно километровых линий.

Угол между северной частью километровой линии У = const и направлением заданной прямой – дирекционный угол a. Счет a ведется по круговой системе.

При известном дирекционном угле истинный пеленг (ИП) рассчитывается (рис. 10.6):

(10.21)

Пример: в точке j = 50°35¢ N; l = 66°10¢ E измерен a = 156,2°. ИП =?

Решение:

1)

2)

3) .

4) .

 

 

Рис. 10.6. Дирекционный угол

 

Применение прямоугольной системы координат упрощает решение прямой и обратной геодезических задач.

Прямая геодезическая задача – вычисление координат искомой точки (т. Е2) по известным координатам Х1, У1 исходной точки (т. Е1), дирекционному углу a и расстоянию (базе) Е1Е2 = Б.

(10.22)

® знаки приращений D Х и D У совпадают со знаками функций cos a и sin a.

Если задан ИП или азимут АБ, то:

, (g – для т. Е1). (10.23)

Обратная геодезическая задача – вычисление направления и расстояния между точками по известным их координатам.

, (10.24)

а . (10.25)

Координаты точек должны быть даны в одной и той же координатной зоне.

 

Знаки + + + – – – – +
Угол aТ «+» к … Угол aТ «–» из … 0° – – 360° 180° – – 180°


Поделиться:


Последнее изменение этой страницы: 2016-04-19; просмотров: 806; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.142.113 (0.008 с.)