Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Минимальные остовные деревья нагруженных графовСодержание книги
Поиск на нашем сайте
Граф G = (X, A) называется нагруженным, если для каждого ребра (xi, xj) определена его длина (или вес) cij. Пусть G - связный нагруженный граф. Задача построения минимального остовного дерева заключается в том, чтобы из множества остовных деревьев найти дерево, у которого сумма длин ребер минимальна. Приведем типичные случаи, когда возникает необходимость построения минимального остовного дерева графа. а) Нужно соединить n городов железнодорожными линиями (автомобильными дорогами, линиями электропередач, сетью трубопроводов и т.д.) так, чтобы суммарная длина линий или стоимость была бы минимальной. б)Требуется построить схему электрической сети, в которой клеммы должны быть соединены с помощью проводов наименьшей общей длины. Задачу построения минимального остовного дерева можно решить с помощью следующего алгоритма. Алгоритм 3.2 (Алгоритм Краскала). Шаг 1. Установка начальных значений. Вводится матрица длин ребер C графа G. Шаг 2. Выбрать в графе G ребро минимальной длины. Построить граф G 2, состоящий из данного ребра и инцидентных ему вершин. Положить i = 2. Шаг 3. Если i = n, где n - число ребер графа, то закончить работу (задача решена), в противном случае перейти к шагу 4. Шаг 4. Построить граф Gi + 1, добавляя к графу Gi новое ребро минимальной длины, выбранное среди всех ребер графа G, каждое из которых инцидентно какой-нибудь вершине графа Gi и одновременно инцидентно какой-нибудь вершине графа G, не содержащейся в Gi. Вместе с этим ребром включаем в Gi + 1и инцидентную ему вершину, не содержащуюся в Gi. Присваиваем i: = i +1 и переходим к шагу 3. Пример 3.19. Найдем минимальное остовное дерево для графа, изображенного на рис. 3.14. Рис. 3.14
Шаг 1. Установка начальных значений. Введем матрицу длин ребер C: С = . Шаг 2. Выберем ребро минимальной длины. Минимальная длина ребра равна единице. Таких ребер три: (x 1, x 2), (x 1, x 4), (x 2, x 4). В этом случае можно взять любое. Возьмем (x 1, x 2). Построим граф G 2, состоящий из данного ребра и инцидентных ему вершин x 1 и x 2. Положим i = 2. Шаг 3. Так как n = 5, то i ¹ n, поэтому переходим к шагу 4. Шаг 4. Строим граф G 3, добавляя к графу G 2новое ребро минимальной длины, выбранное среди всех ребер графа G, каждое из которых инцидентно одной из вершин x 1, x 2 и одновременно инцидентно какой-нибудь вершине графа G, не содержащейся в G 2 т. е. одной из вершин x 3, x 4, x 5. Таким образом, нужно выбрать ребро минимальной длины из ребер (x 1, x 4), (x 1, x 5), (x 2, x 3), (x 2, x 4), (x 2, x 5). Таких ребер длины единица два: (x 1, x 4) и (x 2, x 4). Можно выбрать любое. Возьмем (x 1, x 4). Вместе с этим ребром включаем в G 3вершину x 4, не содержащуюся в G 2. Полагаем i =3 и переходим к шагу 3. Шаг 3. Так как i ¹ n, поэтому переходим к шагу 4. Шаг 4. Строим граф G 4, добавляя к графу G 3новое ребро минимальной длины из ребер (x 1, x 5), (x 2, x 3), (x 2, x 5), (x 4, x 5). Такое ребро длины два одно: (x 2, x 3). Вместе с этим ребром включаем в G 4вершину x 3, не содержащуюся в G 3. Полагаем i =4 и переходим к шагу 3. Шаг 3. Так как i ¹ n, поэтому переходим к шагу 4. Шаг 4. Строим граф G 5, добавляя к графу G 3новое ребро минимальной длины из ребер (x 1, x 5), (x 2, x 5), (x 4, x 5). Таких ребер длины три два: (x 2, x 5) и (x 4, x 5). Возьмем (x 2, x 5). Вместе с этим ребром включаем в G 5вершину x 5, не содержащуюся в G 4. Полагаем i =5 и переходим к шагу 3. Шаг 3. Так как i = n, то граф G 5 – искомое минимальное остовное дерево. Суммарная длина ребер равна 1 + 1 + 2 + 3 = 7. Процесс построения минимального остовного дерева изображен на рис. 3.15. Рис. 3.15 Тема 19 Булевы функции
Лекция 19.1 «Булевы функции» Учебные вопросы: 1. Определение булевой функции. Формулы логики булевых функций 2. Булева алгебра (алгебра логики). Нормальные формы 3. Разложение булевой функции по переменным 4. Минимизация формул булевых функций в классе дизъюнктивных нормальных форм
|
||||
Последнее изменение этой страницы: 2016-12-15; просмотров: 617; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.184.236 (0.005 с.) |