ГЛАВА 6 СТОИМОСТЬ ПОД РИСКОМ (Value at Risk)



Мы поможем в написании ваших работ!


Мы поможем в написании ваших работ!



Мы поможем в написании ваших работ!


ЗНАЕТЕ ЛИ ВЫ?

ГЛАВА 6 СТОИМОСТЬ ПОД РИСКОМ (Value at Risk)



Общие замечания

Показатель VaR(Value at Risk) появился в 90-е годы прошлого века. Определяет стоимость портфеля финансовых активов, которой рискует инвестор. Появление VaR связано с тем, что во многих случаях дисперсия не может служить хорошим показателем, измеряющим риск портфеля активов.

VaR- показатель риска, показывающий, какой максимальный ущерб может понести актив или портфель активов инвестора в течение определенного периода времени с заданной доверительной вероятностью.

 


Предполагается, что в период времени, для которого производится оценка, изменение в портфеле активов не происходит. Наиболее распространенный период, на который рассчитывается VaR – один день. Чем больше период, на который рассчитывается VaR, тем большее количество наблюдений необходимо. Так, для объективной оценки однодневного VaR, достаточно 250 однодневных наблюдений, для оценки десятидневного VaR, с непересекающимися периодами в 10 дней потребуются данные почти за семь лет. Кроме технических трудностей получить данные за большой период времени, следует пониметь, что эти данные будут недостаточно представительными из-за динамичного развития рынков.

Какой риск измеряет VaR. Согласно методике расчета, VaR оценивает возможность потерь, вызванных рыночным риском, который проявится в изменении цены (и соответственно доходности) финансовых инструментов. Предполагается, что цена способна отразить в себе проявление большинства рисконесущих факторов. Поэтому инвесторы склонны смотреть на VaR как на меру всех рисков, связанных с финансовыми инструментами. В некоторых работах, указывается, что реальный размер убытков может оказаться большим, чем это оценивает VaR, если учитывать политические риски, риски ликвидности, регуляторные риски, которым подвержены финансовые активы.

Второе замечание связано с трактовкой прибыли и убытков в VaR, который рассматривается априори как отрицательный фактор. Так, определяя ушерб с 99% вероятностью, мы исходим из того, что ожидаемая стоимость портфеля равна не средней, а практически максимально возможной.

Временной характер VaR. В большинстве своих применений VaR вычисляется на короткие промежутки времени – один день, неделя, месяц. Чем короче оцениваемый период, тем точнее оценки VaR. Поэтому, этот показатель, как правило, используется компаниями при оперативном управлении рыночными рисками. В отличие от других мер риска, таких как стандартное отклонение или , которые дают представление о некотором усредненном риске, VaR дает представления о потерях в конкретный период

Ограничения VaR.Полагают, что использование методов VaR может привести к ошибочным результатам, которые будут вызваны следующими обстоятельствами:

· Распределение доходностей. Для каждого показателя VaR предполагается наличие определенного распределения доходностей;

· История – не очень хорошая база для реальных прогнозов. Во всех прогнозах VaR в той или иной степени используются исторические данные. Если период, за который взяты исторические данные был стабильным, VaR будет небольшим, если нестабильным, то – будет принимать большие значения. Однако, в рыночной экономике, отклонения, любые отклонения приводят к появлению механизмов, которые восстанавливают нарушенное равновесия. Тогда, достаточно ненадежной смотрится идея строить суждения о будущей рисках исходя из бывших отклонениях, учтенных экономикой.

· Нестационарные корреляции. Оценки VaR зависят от корреляционных связей источников риска. Корреляционные связи обычно основываются на исторических данных и являются волонтильными. Поскольку всякий раз , в расчетах, используется только одна корреляционная матрица, качество оценок зависят от того, насколько правильная матрица корреляций была использована.

Достоинства методологии VaR.Несмотря на известную критику, метод VaR успешно используется в практике многих финансовых институтов. Среди достоинств этого метода выделяют следующие:

· Использование портфельного подхода к рассмотрению структуры активов;

· Расчет ожидаемой прибыли определяется реальными рыночными ставками финансовых инструментов, а не базовыми рыночными ставками, имеющими аналитическую природу;

· За счет использования корреляционных матриц получается более надежная оценка активов и портфелей активов, чем при помощи стохастического моделирования;

Существуют две группы методик VaR: а) аналитическими или дисперсионно-ковариационными модели; б) непараметрические модели.

 


Различные модели VaR

Параметрическая модель VaR

Модель называется параметрической, если нам известна функция распределения и параметры распределения случайной величины. В параметрической модели VaR предполагается, что доходности финансовых активов следуют определенному закону распределения, как правило, нормальному. Используя исторические наблюдения, определяют среднее значения, дисперсии и ковариации доходностей финансовых активов. На их основе определяют VaR портфеля с заданным доверительным уровнем по следующей формуле:

где - стоимость портфеля;

– стандартное отклонение доходностей портфеля, соответствующее периоду времени, для которого рассчитывается VaR;

– количество стандартных отклонений, соответствующее заданному доверительному уровню α.

Выделяют понятия абсолютного и относительного VaR. Абсолютный VaR определяет размер максимально возможной суммы которую инвестор может потерять в течение определенного периода времени с заданной вероятностью. Относительный VaR в отличие от абсолютного определяется относительно ожидаемой доходности портфеля.

В случае, когда инвестору известны VaR активов, входящих в его портфель, VaR портфеля определяется по формуле:

где - вектор-столбец и вектор-строка VaR активов портфеля;

– матрица корреляции активов портфеля

Если, при определении VaR портфеля, учитываются корреляции между активами, то речь идет о диверсифицированном VaR, если корреляции не учитываются, то говорят о недиверсифицированном VaR. Он представляет собой простую сумму индивидуальных VaR активов портфеля.

Поскольку корреляции могут изменяться со временем, то наряду с показателем диверсифицированный VaR, целесообразно определять недиверсифицированный VaR, который покажет максимальные потери для данного уровня доверительной вероятности при неустойчивых корреляциях или ошибках в их определении.

Предположение о нормальном распределении активов, входящих в портфель, позволяет переводить значение VaR из одного уровня доверительно вероятности в другой. Покажем на примере. Возьмем и . Выразим из первой формулы и подставим во вторую

Аналогичным образом можно пересчитать VaR для разных периодов времени. Возьмем и . Выразим из первой формулы и подставим во вторую

Поскольку VaR определяется на основе статистических данных за определенный период времени, существует возможность получения оценок VaR, не соответствующих генеральной совокупности. В связи с этим, существует реальная необходимость оценки доверительного интервала для стандартного отклонения доходности портфеля активов.

Нижнюю ( ) и верхнюю( ) границы доверительного интервала можно определить и следующих формул:

где - нижняя и верхняя граница доверительного интервала стандартного отклонения доходностей инвестиционного портфеля

В случае, когда убытки могут превысить значение VaR инвестору необходимо знать, какие размер убытков он должен ожидать. В этом случае, используют следующее соотношение:

 

где - VaR активов портфеля при заданной доверительной вероятности γ;

– средние ожидаемые потери при условии, что фактические убытки X, окажутся больше чем .

Противоположным понятием, по отношению к VaR, является понятие EaR(Earnings at Risk), который показывает, какой максимальный доход может принести владение определенным портфелем финансовых активов в течение определенного периода времени с заданной доверительной вероятностью.

При выборе портфеля можно опираться на соотношение EaR к VaR. Чем больше это соотношение при определенном уровне доверительной вероятности, тем предпочтительнее портфель.



Последнее изменение этой страницы: 2016-09-05; просмотров: 469; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.165.57.161 (0.014 с.)