Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Силы инерции во вращающейся системе отсчета и их применение. Сила кориолиса.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
При движении тела относительно вращающейся системы отсчета, кроме центростремительной и центробежной сил, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции Здесь – сила Кориолиса, также являющаяся силой инерции, – угловая скорость вращения диска. Сила Кориолиса вызывает кориолисово ускорение. Выражение для этого ускорения имеет вид Ускорение направлено перпендикулярно векторам и и максимально, если относительная скорость точки ортогональна угловой скорости вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами и равен нулю или π, либо если хотя бы один из этих векторов равен нулю. Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу. Таким образом, всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета. Влияние кориолисовых сил необходимо учитывать в ряде случаев при истолковании явлений, связанных с движением тел относительно земной поверхности. Если тело удаляется от оси вращения, то сила направлена противоположно вращению и замедляет его. С учетом всех сил инерции, уравнение Ньютона для неинерциальной системы отсчета примет вид: – сила инерции, обусловленная поступательным движением неинерциальной системы отсчета; – две силы инерции, обусловленные вращательным движением системы отсчета; – ускорение тела относительно неинерциальной системы отсчета: 17. Преобразование координат Галилея. Механический принцип относительности. Закон сложения скоростей. Инварианты преобразования. Дифференцируя эти уравнения по времени и учитывая, что , найдем соотношения между скоростями и ускорениями: Таким образом, если в системе К тело имеет ускорение а, то такое же ускорение оно имеет и в системе К’. Согласно второму закону Ньютона: т.е. второй закон Ньютона одинаков в обоих случаях. При движение по инерции, т.о., справедлив и первый закон Ньютона, т.е. рассматриваемая нами подвижная система является инерциальной. Следовательно, уравнения Ньютона для материальной точки, а также для произвольной системы материальных точек одинаковы во всех инерциальных системах отсчета - инвариантны по отношению к преобразованиям Галилея. Этот результат называется механическим принципом относительности (принцип относительности Галилея), и формулируется следующим образом: равномерное и прямолинейное движение (относительно какой-либо инерциальной системы отсчета) замкнутой системы не влияет на закономерности протекания в ней механических процессов. Следовательно, в механике все инерциальные системы отсчета совершенно равноправны. Поэтому никакими механическими опытами внутри системы нельзя обнаружить движется ли система равномерно и прямолинейно или покоится. Механический принцип относительности 1. Координаты и время в двух произвольных инерциальных системах отсчета связаны преобразованием Галилея: где r и r' - раднус-векторы движущейся точки в первой и второй системах отсчета, ve - скорость равномерного и прямолинейного движения второй системы по отношению к первой, а r0 - радиус-вектор, проведенный из начала первой системы в начало второй системы в момент времени t = 0. Второе условие (t' = t) выражает абсолютный характер времени в классической механике, т. е. одинаковость его течения во всех инерциальных системах отсчета. a' = dv'/dt = dv/dt = a Ускорение какой-либо материальной точки во всех инерциальных системах одинаково. Поэтому одинаковы и силы, действующие на движущуюся материальную точку: Следовательно т.е. уравнения движении материальной точки и систем этих точек одинаковы во всех инерциальных системах отсчета - инвариантны по отношению к преобразованию Галилея. Закон сложения скоростей Рассмотрим две инерциальные системы отсчета k и k '. Система k ' движется относительно k со скоростью v = const вдоль оси x. Точка М движется в двух системах отсчета (рис. 8.1). Найдем связь между координатами точки M в обеих системах отсчета. Отсчет начнем, когда начала координат систем совпадают, то есть t = t '. Тогда:
Совокупность уравнений (8.1.1) называется преобразованиями Галилея. В уравнениях (8.1.1) время t = t ', т.е. в классической механике предполагалось, что время течет одинаково в обеих системах отсчета независимо от скорости. («Существует абсолютное время, которое течет всегда одинаково и равномерно», – говорил Ньютон). В векторной форме преобразования Галилея можно записать так:
Продифференцируем это выражение по времени, получим (рис. 8.2):
Выражение (8.1.3) определяет закон сложения скоростей в классической механике. Из него следует, что скорость движения точки М (сигнала) в системе k ' и в системе k различна. Инвариа́нт в физике — физическая величина, значение которой в некотором физическом процессе не изменяется с течением времени.[1] Примеры: энергия, компоненты импульса и момента импульса в замкнутых системах. Также инвариантами называются величины, независимые от условий наблюдения, в особенности — от системы отсчета — например интервал в теории относительности инвариантен в этом смысле. Промежуток времени между двумя событиями, а также расстояние между ними (местами событий) для наблюдателей, движущихся в различных направлениях с разными скоростями, будут разными, однако интервал между этими событиями для всех наблюдателей будет один. К этой же категории относится, например скорость света в вакууме. Такие величины, в зависимости от класса систем отсчета, при переходе между которыми сохраняется инвариантность данной величины, называют лоренц-инвариантными (инвариантами группы Лоренца) или инвариантами группы общекоординатных преобразований (рассматриваемыми в общей теории относительности); для ньютоновской физики может иметь смысл также рассматривать инвариантность относительно преобразований Галилея (инвариантными относительно таких преобразований являются компоненты ускорения и силы). Понятие инвариантности (инвариантов) в физике лежит в русле принятого в математике понятия «инвариант преобразований (группы преобразований)» (той или иной конкретной группы преобразований — сдвигов времени, преобразований Лоренца и т. п.). 18. Постулаты специальной теории относительности. Преобразования Лоренца. Относительность одновременности. Постулаты СТО. Классическая механика Ньютона прекрасно описывает движение макротел, движущихся с малыми скоростями (υ << c). В нерелятивистской физике принималось как очевидный факт существование единого мирового времени t, одинакового во всех системах отсчета. В основе классической механики лежит механический принцип относительности (или принцип относительности Галилея): законы динамики одинаковы во всех инерциальных системах отсчета. Этот принцип означает, что законы динамики инвариантны (т. е. неизменны) относительно преобразований Галилея, которые позволяют вычислить координаты движущегося тела в одной инерциальной системе (K), если заданы координаты этого тела в другой инерциальной системе (K'). Итак, на рубеже XIX и XX веков физика переживала глубокий кризис. Выход был найден Эйнштейном ценой отказа от классических представлений о пространстве и времени. Наиболее важным шагом на этом пути явился пересмотр используемого в классической физике понятия абсолютного времени. Классические представления, кажущиеся наглядными и очевидными, в действительности оказались несостоятельными. Многие понятия и величины, которые в нерелятивистской физике считались абсолютными, т. е. не зависящими от системы отсчета, в эйнштейновской теории относительности переведены в разряд относительных. Так как все физические явления происходят в пространстве и во времени, новая концепция пространственно-временных закономерностей не могла не затронуть в итоге всю физику. В основе специальной теории относительности лежат два принципа или постулата, сформулированные Эйнштейном в 1905 г. Принцип относительности: все законы природы инвариантны по отношению к переходу от одной инерциальной системы отсчета к другой. Это означает, что во всех инерциальных системах физические законы (не только механические) имеют одинаковую форму. Таким образом, принцип относительности классической механики обобщается на все процессы природы, в том числе и на электромагнитные. Этот обобщенный принцип называют принципом относительности Эйнштейна. Принцип постоянства скорости света: скорость света в вакууме не зависит от скорости движения источника света или наблюдателя и одинакова во всех инерциальных системах отсчета. Скорость света в СТО занимает особое положение. Это предельная скорость передачи взаимодействий и сигналов из одной точки пространства в другую. Эти принципы следует рассматривать как обобщение всей совокупности опытных фактов. Следствия из теории, созданной на основе этих принципов, подтверждались бесконечными опытными проверками. СТО позволила разрешить все проблемы «доэйнштейновской» физики и объяснить «противоречивые» результаты известных к тому времени экспериментов в области электродинамики и оптики. В последующее время СТО была подкреплена экспериментальными данными, полученными при изучении движения быстрых частиц в ускорителях, атомных процессов, ядерных реакций и т. п.
Преобразования Лоренца. Классические преобразования Галилея несовместимы с постулатами СТО и, следовательно, должны быть заменены. Эти новые преобразования должны установить связь между координатами (x, y, z) и моментом времени t события, наблюдаемого в системе отсчета K, и координатами (x', y', z') и моментом времени t' этого же события, наблюдаемого в системе отсчета K'. Кинематические формулы преобразования координат и времени в СТО называются преобразованиями Лоренца. Они были предложены в 1904 году еще до появления СТО как преобразования, относительно которых инвариантны уравнения электродинамики. Для случая, когда система K' движется относительно K со скоростью υ вдоль оси x, преобразования Лоренца имеют вид:
Относительность одновременности. Два любых события в точках А и В, одновременные в системе К1 не одновременны в системе К. Но в силу принципа относительности системы К1 и К совершенно равноправны. Ни одной из этих систем нельзя отдать предпочтение. Поэтому мы вынуждены прийти к заключению, что одновременность пространственно разделенных событий относительна. Причиной относительности одновременности является, как мы видим, конечность скорости распространения сигналов.
|
|||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 1338; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.222.21.139 (0.008 с.) |