![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Инерции. Принцип эквивалентности сил инерции и гравитацииСодержание книги
Поиск на нашем сайте
Основное уравнение динамики записано выше для инерциальной системы отсчета (ИСО). В общем случае система координат может быть связана с телом отсчета, движущимся произвольно в некоторой ИСО. Для записи уравнения движения частицы относительно такой неинерциальной системы отсчета (НИСО) воспользуемся формулой сложения ускорений (теоремой Кориолиса):
Здесь сила Итак, уравнение движения в НИСО имеет вид:
Здесь Если частица в НИСО неподвижна, то Сила Кориолиса зависит не только от переносного движения, но и от относительного движения частицы в НИСО: Для тел на Земле центробежная сила инерции проявляется в зависимости ускорения свободного падения от широты местности (на экваторе величина g меньше, чем на полюсах). Сила Кориолиса отклоняет движущиеся тела (в северном полушарии любая река больше подмывает правый берег); действием силы Кориолиса объясняется своеобразное движение маятника Фуко. Совместное действие центробежной силы и силы Кориолиса отклоняет свободно падающее тело на юго-восток (в Северном полушарии) от направления к центру Земли.
Силы инерции, действующие на частицу в НИСО, по своим проявлениям не отличаются от фундаментальной силы, действующей в гравитационном поле. Это их свойство обусловлено пропорциональностью (при принятом выборе единиц измерения – равенством) инертной и гравитационной масс тела. Эта пропорциональность (равенство) для всех тел не вытекает из каких-либо положений механики, а является самостоятельным утверждением – обобщением экспериментальных фактов (опыты Галилея, Ньютона, Бесселя, Дикке, Панова и Брагинского и др.). Равенство проверено экспериментально с очень высокой степенью точности. Важнейшим следствием равенства инертной и гравитационной масс является равенство ускорений для всех тел (частиц) в данной точке гравитационного поля (ускорение не зависит от массы рассматриваемого тела). Также не зависят от массы и ускорения, вызываемые заданными силами инерции. Это приводит к утверждению о неразличимости сил инерции и сил тяготения в небольшой области пространства за небольшие промежутки времени. Данное утверждение носит название принципа эквивалентности сил инерции и гравитации: поле тяготения в небольшой области пространства и времени по своему действию тождественно действию сил инерции в ускоренной системе отсчета. Заметим, что в небольшой области пространства и времени гравитационное поле можно считать однородным и стационарным. Принцип эквивалентности сыграл фундаментальную эвристическую роль в создании общей теории относительности, в которой равноправными считаются все системы отсчета, а не только ИСО.
7 Принципы д¢Аламбера, виртуальных перемещений и д¢Аламбера-Лагранжа. Общее уравнение механики Д¢Аламбер показал, что дифференциальные уравнения движения системы частиц могут быть представлены в форме уравнений равновесия системы сил. Уравнения движение для системы из n частиц имеют вид:
Назовем векторы
д¢Аламберовыми силами инерции. Тогда
т. е. дифференциальные уравнения движения приняли вид условий равновесия сил, приложенных к частицам системы.
Принцип д¢Аламбера: если к заданным силам и реакциям связей добавить силы, равные силам инерции, то полученная система будет находиться в равновесии. Математическое выражение принципа д¢Аламбера в декартовых координатах:
Принцип д¢Аламбера открывает возможность применения к решению динамических задач специфических методов аналитической статики, что в ряде случаев упрощает решение. Введем понятия возможных, действительных и виртуальных перемещений. Возможным перемещением
Действительное перемещение
Виртуальным перемещением
Подставляя в (2.2.6), находим:
что совпадает с (2.2.6) при стационарной связи (т. е. при В математике величины вида
Вариация координаты В аналитической механике широко применяется метод варьирования как координат, так и функций координат частиц механической системы. Пусть имеется функция координат и времени
Если координаты подверглись варьированию, то новое значение функции
Разложим (2.2.11) в ряд Тейлора по степеням бесконечно малых величин
Вариация функции (т. е. её приращение, обусловленное варьированием независимых аргументов)
отличается от полного дифференциала отсутствием члена с Т. к. координаты частицы до и после перемещения должны удовлетворять уравнениям связей, то их вариации не могут быть совершенно произвольными независимыми величинами. В самом деле, если уравнение связи
то должно выполняться равенство
Тогда
т. е. одна из вариаций координат оказывается зависимой. Все сказанное выше применимо, естественно, и для системы частиц, для которой среди Вернемся к рассмотрению системы из
Здесь
Выражения вида Заметим, что введя в уравнение реакции связей, мы от системы частиц со связями перешли к системе с силами Заметим также, что
Если связи идеальные, то
(2.2.20) – условие Лагранжа, выражающее принцип виртуальных перемещений: виртуальная работа заданных сил, приложенных к системе с идеальными связями и находящейся в равновесии, равна нулю. Объединим принцип виртуальных перемещений с принципом д¢Аламбера. Для идеальных связей запишем:
Это общее уравнение механики. В любой момент времени движения механической системы с идеальными связями алгебраическая сумма виртуальных работ заданных сил и д¢Аламберовых сил инерции равна нулю – объединенный принцип д¢Аламбера–Лагранжа, который можно использовать как основную аксиому механики. В декартовых координатах общее уравнение механики:
Общее уравнение механики легко обобщается на случай неидеальных связей:
|
|||||||
Последнее изменение этой страницы: 2016-07-16; просмотров: 340; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.83.188 (0.012 с.) |