ТОП 10:

Динамика вращательного движения абсолютно твердого тела. Момент силы. Основной закон вращательного движения. Момент инерции.



Динамика вращательного движения.

Описанное нами движение твердого тела относительно неподвижной точки является основным видом движения. Однако вычислить вектор – момент импульса системы относительно произвольной точки – не просто: надо знать шесть проекций (три задают положение тела, три задают положение точки).
Значительно проще найти момент импульса тела, вращающегося вокруг неподвижной оси z (рис. 6.4). В этом случае составляющие – момента внешних сил, направленные вдоль x и y, компенсируются моментами сил реакции закрепления. Вращение вокруг оси z происходит только под действием Mz .
Пусть некоторое тело вращается вокруг оси z (рис. 6.5).

6,4 6,3

Получим уравнение динамики для некоторой точки mi этого тела, находящегося на расстоянии Ri от оси вращения. При этом помним, что и направлены всегда вдоль оси вращения z, поэтому

или .(в обоих случаях в знаменателе стоит dt)

Поскольку у всех точек разная, введем вектор угловой скорости , причем . Тогда .
Так как тело абсолютно твердое, то в процессе вращения mi и Ri останутся неизменными. Тогда

Обозначим Ii – момент инерции точки находящейся на расстоянии R от оси вращения:

  . (6.2.1)  

Момент инерции тела служит мерой инертности во вращательном движении.
В общем случае тело состоит из огромного количества точек, и все они находятся на разных расстояниях от оси вращения. Момент инерции такого тела равен:

  . (6.2.2)  

Как видно, момент инерции I – величина скалярная.
Просуммировав (6.2.1) по всем i-м точкам, получим или

  . (6.2.3)  

Это основное уравнение динамики тела, вращающегося вокруг неподвижной оси. (Сравним: – основное уравнение динамики поступательного движения тела).
Для момента импульса тела, вращающегося вокруг оси z, имеем:

  , , . (6.2.4)  

(Сравним: – для поступательного движения).
При этом помним, что и - динамические характеристики вращательного движения, направленные всегда вдоль оси вращения. Причем определяется направлением вращения, как и , а направление зависит от того, ускоряется или замедляется вращение.

Момент силы.

Сила приложенная к твердому телу, которое может вращаться вокруг некоторой точки, создает момент силы. Действие момента силы аналогично действию пары сил.

Момент силы

Момент силы относительно некоторой точки — это векторное произведение силы на кратчайшее расстояние от этой точки до линии действия силы.

Единица СИ момента силы:

1. [M]= Ньютон · метр

Если:
M — момент силы (Ньютон · метр),
F — Приложенная сила (Ньютон),
r — расстояние от центра вращения до места приложения силы (метр),
l — длина перпендикуляра, опущенного из центра вращения на линию действия силы (метр),
α — угол, между вектором силы F и вектором положения r,
То

2. M= F·l= F·r·sin(α)

или в виде векторного произведения

Момент силыаксиальный вектор. Он направлен вдоль оси вращения.

Направление вектора момента силы определяется правилом буравчика, а величина его равна M.

Основной закон вращательного движения.

(1.10)

Уравнение (1.10) – основной закон динамики вращательного движения твердого тела. Величина – геометрическая сумма всех моментов сил, то есть момент силы F, сообщающий всем точкам тела ускорение . – алгебраическая сумма моментов инерции всех точек тела. Закон формулируется так: «Момент силы, действующий на вращающееся тело, равен произведению момента инерции тела на угловое ускорение».

 

 

Момент инерции.

Момент инерции - величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.

Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело. Момент инерции элементарной (точечной) массы mi, отстоящей от оси на расстоянии ri, равен:

.

Момент инерции всего тела относительно оси равен:

или, для непрерывно распределенной массы:

Момент инерции всего тела сложной конфигурации обычно определяют экспериментально.

Момент инерции некоторых однородных твердых приведены в таблице 1.

Вычисление моментов инерции во многих случаях можно упростить, используя соображения симметрии и теорему Штейнера. Согласно теореме Штейнера момент инерции тела относительно какой-либо оси IAравен моменту инерции тела равен инерции тела относительно параллельной оси, проходящей через центр масс IC, сложенному с величиной ma2, где a - расстояние между осями:

IA = IC + ma2.

Понятием о моменте инерции широко пользуются при решении многих задач механики и техники.

13.Момент инерции. Зависимость момента инерции твердого тела от его характеристик. Теорема Штейнера и ее применение на конкретном примере







Последнее изменение этой страницы: 2016-08-06; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.222.93 (0.004 с.)