Ділення двоцифрового числа на двоцифрове. Ділення виду 64 : 16, 125 : 25. 





Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Ділення двоцифрового числа на двоцифрове. Ділення виду 64 : 16, 125 : 25.



 

Спочатку вводиться правило перевірки ділення. Міркування здійснюються наступним чином.

Ділене дорівнює добутку частки і дільника. Отже, якщо після множення частки на дільник не отримали ділене, то в обчисленнях припущено помилку.  

 

 


Учні вчаться перевіряти ділення множенням, наприклад:

84 : 6 = 14, 14 * 6 = 84 – в результаті множення частки на дільник отримали ділене, таким чином ділення виконано вірно.

Потім вводиться перевірка множення. Міркування здійснюються наступним чином:

 
 
Якщо добуток поділити на один із множників, то отримаємо інший множник. Отже, якщо після ділення добутку на один із множників не отримали інший множник, то в обчисленнях припущено помилку.

 


Учні вчаться перевіряти множення діленням, наприклад:

18 * 5 = 90, 90 : 5 = 18 – в результаті ділення добутку на другий множник, отримали першій множник; отже множення виконано вірно.

 

360 : 3 = 36 дес. : 3 = 12 дес. = 120
Далі учні зустрічаються з новим випадком ділення розрядного числа на одноцифрове, коли в частці отримаємо двоцифрове число десятків. Міркування здійснюється за відомою пам’яткою, засобом прийому укрупнення розрядних одиниць:

 

Ознайомлення з діленням двоцифрового числа на двоцифрове число здійснюється способом випробування. Треба зазначити, що з способом випробування діти познайомились при вивченні ділення розрядного числа на розрядне число, тому відомий їм спосіб міркування треба перенести в нову ситуацію:

- Знайдіть значення частки способом випробування: 80 : 20.

- Як ми міркували? ( Розділити 80 на 20 – це означає знайти таке число, яке при множенні на 20 дає 80. Будемо шукати його способом проб: спробуємо число 2, помножимо 2 на дільник, порівняємо результат з діленим .....)

- Чи можна так само міркувати при обчислюванні частки чисел 64 та 16? ( Можна. 64 поділити на 16 – це означає знайти таке число, яке при множенні на 16 дає 64. Це число будемо шукати випробуванням. Починаємо випробувати числа, починаючи з 2...)

В рамках даної теми існує можливість познайомити учнів з більш раціональним способом проб, застосовуючи прикидку:

51 : 17 = , * 17 = 51

*

Прикидка: шукаємо таке число, яке при множенні на одиниці дільника, 7, дає результат, що закінчується одиницями діленого, 1. При множенні 3 на 7 в результаті отримаємо число 21, воно закінчується 1. Чи є інші такі числа? ( Ні.) Випробуємо лише число 3: 3 * 17 = 51. Висновок: 3 – є часткою чисел 51 та 17.

 
 

 

 


Треба зазначити, що діленні двоцифрового числа на двоцифрове можна здійснювати способом послідовного ділення. Ми вже виконували такі завдання при вивченні правила ділення числа на добуток ( див. Тему “Ділення числа на добуток. Ділення розрядного числа на розрядне”.)

 
 
64 : 16 = 64 : ( 8 * 2 ) = (64 : 8) : 2 = 8 : 2 = 4

 

 


Тут треба звернути увагу, на подання дільника у вигляді добутку зручних множників: першим повинно бути найбільше число, на яке ділиться дільник за таблицями ділення.

 

Ділення з остачею.

Конкретний зміст ділення з остачею розкривається при розв’язуванні задач на ділення на вміщення та на рівні частини, за допомогою операцій з предметами: учні впевнюються, що не завжди можна виконати розбиття множини на рівно чисельні підмножини, і що в таких випадках операція розбиття пов’язується з дією ділення з остачею.

Задача. 20 кольорових олівців дівчинка поставила в склянки, по 6 олівців у кожну. Скільки дівчинка отримала склянок з олівцями.

Це задача на конкретний зміст дії ділення на вміщення, тому учні відразу можуть записати її розв’язання наступним чином: 20 : 6. Але знайти значення цієї частки вони не можуть, тому що не існує такого числа, яке при множенні на 6 дає 20. Складається проблемна ситуація. Вчитель пропонує її вирішення засобом практичних дій:

- Скільки потрібно взяти олівців, щоб покласти в першу склянку? ( 6) Візьміть 6 олівців і покладів їх в першу склянку.

- Чи всі олівці ми розклали? (Ні, не всі.)

- Візьміть ще стільки олівців, щоб покласти у другу склянку. Скільки потрібно взяти олівців? ( 6) Беремо 6 олівців і кладемо у другу склянку.

- Чи всі олівці ми розклали? (Ні, не всі.)

- Візьміть ще стільки олівців, щоб покласти у третю склянку. Скільки потрібно взяти олівців? ( 6) Беремо 6 олівців і кладемо у третю склянку.

- Чи всі олівці ми розклали? (Ні, залишилося 2 олівці.) Чи можна їх покласти у четверту склянку? ( Ні, тому що треба розкладати по 6 олівців у кожну склянку, а тут лише 2.)

- Скільки ми отримали склянок з олівцями? ( Три склянки по 6 олівців в кожній.)

- Скільки олівців залишилося? (Залишилося 2 олівці.)

- Розв’язання цієї задачі можна так: 20 : 6 = 3 ( ост. 2) – ми виконали ділення з остачею, тут : 20 – ділене, 6 – дільник, 3 – частка, 2 – остача. Цей запис читають так: 20 розділити по 6, в частці буде 3 і в остачі 2.

Після ознайомлення з дією ділення з остачею учні виконують ділення з остачею, спираючись на практичні дії:

17

 

17 : 3

                                                                                         
                                 
 
   
 
           
             
 

 

 


Порівнюючи приклади на ділення націло і ділення з остачею:

12 : 3 = 4 16 : 4 = 4 10 : 5 = 2

13 : 3 = 4 ( ост 1) 18 : 4 = 4 (ост. 2) 13 : 5 = 2 ( ост. 3)

учні дістають висновку: в остачі отримуємо число, яке показує на скільки ділене більше за число, яке ділиться на дільник націло, а в частці отримуємо те ж саме число, що й при діленні націло.

На другому уроці учні знайомляться з алгоритмом ділення з остачею:

 
 
Пам”ятка   Ділення з остачею  
  1. Називаю всі числа, які менші за ділене, які діляться на дільник націло.
  2. Найбільше з них ділю на дільник і результат записую в частці.
  3. Віднімаю знайдене число з діленого, отримую остачу. Записую у дужках.
  16 : 3 1) 3, 6, 9, 12, 15 2) 15 : 3 = 5 – це частка 3) 16 – 15 = 1 – це остача   16 : 3 = 5 ( ост. 1 )  

 

 


Розглядаючи різноманітні випадки ділення на 4, учні роблять висновок, про те , що остача повинна бути меншою за дільник. Від цього моменту, виконавши ділення з остачею, учні перевіряють чи отримана остача є меншою за дільник. Якщо остача більша за дільник, то ділення можна продовжити.

Також на даному уроці можна звернути увагу учнів на залежність між дільником і кількістю остач: кількість остач ( з нулем) дорівнює дільнику. Отже при діленні на 3 можуть бути три остачі: 0, 1, 2; при діленні на 7 – 0, 2,3,4,5,6.

З перевіркою ділення з остачею учні знайомляться пізніше , вона здійснюється за алгоритмом:

 
 
Пам’ятка Перевірка ділення з остачею
  1. Множу отриману частку на дільник.
  2. Додаю до отриманого добутку остачу.
  3. Порівнюю знайдене число з діленим: якщо це число дорівнює діленому, то ділення з остачею виконано вірно.
  23 : 5 = 4 ( ост. 3) Перевірка: 1) 4 * 5 = 20 2) 20 + 3 = 23 3) 23 = 23   4 * 5 + 3 = 23  

 


Останній запис пам’ятки також можна прочитати так: при діленні 23 на 5, в частці отримуємо 4, а в остачі 3. Крім того, цей запис можна прочитати ще й так: при діленні 23 на 4 в частці отримуємо 5, а в остачі 3.

Запис: 3 * 5 + 4 = 19, можна прочитати лише одним способом: при діленні 19 на 5 в частці отримуємо 3, а в остачі 4 ( якщо ви спробуєте прочитати цей запис другим способом, то остача буде більшою за дільник, що є неможливим.)

Отже, учні повинні навчитися виконувати ділення з остачею за алгоритмом, перевіряти ділення з остачею .

 





Последнее изменение этой страницы: 2016-04-26; просмотров: 1207; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.224.117.125 (0.006 с.)