Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Множення і ділення з числами 0, 1, 10, 100.

Поиск

 

Правило множення 1 на будь-яке число та правило множення 0 на будь-яке число вводиться на підставі індуктивних узагальнень. Під час підготовчої роботи актуалізується конкретний зміст дії множення. (Множення – це додавання однакових доданків.) На підставі означення дії множення, учні знаходять значення добутків:

1 * 3 = 1 + 1 + 1 = 3 1 * 5 = 1 + 1 + 1 + 1 + 1 = 5 ................................................   0 * 6 = 0 + 0 + 0 + 0 + 0 + 0 = 0 0 * 3 = 0 + 0 + 0 = 0 ......................................

Що спільного в цих прикладах? (В них спільний перший множник – це число 1.) Вчитель пропонує порівняти множники і добуток в кожному прикладі першого стовпчика. (В першій рівності другий множник 3 і добуток також 3. В другій рівності – другий множник 5 і добуток 5.) Що спільного в цих прикладах? Учні помічають, що добуток дорівнює другому множнику. Чи завжди при множенні добуток дорівнює другому множнику? А в яких випадках? (Коли ми множимо одиницю на число.) Розкажіть правило. (При множенні одиниці на будь-яке число в добутку отримаємо те ж саме число.)

1 * а = а

 


0 * а = 0
Аналогічно вводиться правило множення нуля на будь-яке число: при множенні нуля на будь-яке число в добутку отримаємо нуль.

 

З метою закріплення цих правил учням пропонуються завдання на порівняння правил множення нуля та одиниці на будь-яке число з правилами додавання нуля та одиниці до будь-якого числа:

1 * 8 0 * 7

1 + 8 0 + 7

0 – 7

а також на підставі знаходження значень виразів:

1 * (4 + 5) 0 * (3 + 2)

1 * 4 + 5 0 * 3 + 2

Правила множення будь-якого числа на одиницю та правило множення будь-якого числа на нуль вводиться на підставі переставної властивості множення, тому що добутки виду: 4 * 1 та 7 * 0 не можна замінити сумою. Таким чином на етапі актуалізації слід повторити переставну властивість дії множення: від перестановки множників значення добутку не змінюється, числа можна множити в будь-якому порядку.

Отже застосовуючи переставну властивість дії множення, учні з раніш розглянутих правил отримують два нових:

1. Правило множення будь-якого числа на одиницю: при множенні будь-якого числа на одиницю в добутку отримаємо теж саме число.

 
 
а * 1 = а

 

 


2. Правило множення будь-якого числа на нуль: при множенні будь-якого числа на нуль в добутку отримаємо нуль.

 
 
а * 0 = 0

 

 


Закріплюються ці правила на підставі порівняння прикладів:

7 * 1 5 * 0 8 * 1 8 * 0 (8 + 1) * 1 (4 + 4) * 0

7 + 1 5 + 0 1 * 8 0 * 8 8 + 1 * 1 4 + 4 * 0

Порівнюючи вирази третього і четвертого стовпчика і їх значень існує можливість узагальнення цих правил:

 
 

 

 


Далі діти знайомляться з правилом ділення будь-якого числа на 1 і правилом ділення будь-якого числа на саме себе. Ці правила вводяться на підставі взаємозв’язку між діями множення і ділення (якщо добуток двох множників поділити на один множник, то в результаті отримаємо інший множник) і з застосуванням правила множення одиниці на будь-яке число (1 * а = а). Тому на етапі підготовки слід актуалізувати ці знання.

Ознайомлення з цими правилами здійснюється засобом індуктивних узагальнень. Учні складають з одного прикладу на множення по два приклади на ділення:

1 * 5 = 5 1 * 8 = 8 1 * а = а

5: 1 = 5 8: 1 = 8 а: 1 = а

5: 5 = 1 8: 8 = 1 а: а = 1

Під час порівняння ділених, дільників і значень часток в кожному рядку, діти дістають висновків:

  1. а: 1 = а
    При діленні будь-якого числа на одиницю, в частці отримаємо те саме число.

 

 

  1. При діленні будь-якого числа на саме себе, в частці отримаємо одиницю.

 
 
а: а = 1

 

 


В наступному навчанні учні знайомляться з правилом ділення нуля на будь-яке число і з неможливістю ділення числа на нуль. Правило ділення нуля на будь-яке число вводиться також на підставі застосування взаємозв’язку дій множення і ділення та правила множення нуля на будь-яке число:

0 * 4 = 0 0 * 7 = 00 * а = 0

0: 4 = 0 0: 7 = 0 0: а = 0

 

Домовилися, що ділити на нуль не можна! Наприклад, не можна 8: 0, тому що не існує такого числа, яке при множенні на 0 дасть 8!

Порівнюючи ділені,дільники і значення часто прикладів другого рядка, учні дістають висновку:

1. При діленні нуля на будь-яке число в частці отримаємо нуль.

0: а = 0

 


2. Ділити на нуль не можна!

а: 0 - не можна!

 


Після цього вводиться правило множення числа 10 та 100 на будь-яке число.

Ці правила вводяться на підставі способу укрупнення розрядних одиниць (заміни розрядних одиниць: 10 = 1 дес., 100 = 1 сот.) і застосовуючи правило множення одиниці на будь-яке число. Ці знання слід актуалізувати під час підготовчої роботи.

Ознайомлення множенням на підставі укрупнення розрядних одиниць здійснюється дедуктивно, на підставі аналізу записів:

               
 
10 * 3 = 30 1 дес.* 3 = 1дес. + 1 дес. + 1 дес. = 3 дес.
 
100 * 3 = 300 1 сот.* 3 = 1сот. + 1 сот. + 1 сот. = 3 сот.
 
   
10 * 3 = 1дес. * 3 = 3 дес. = 30
 
100 * 3 = 1сот. * 3 = 3 сот. = 300
 
   
Пам’ятка А Множення способом укрупнення розрядних одиниць.
  1. Замінюю 10 (100) одиниць більш крупною розрядною одиницею: 1 дес. (1 сот.)
  2. Множу одну розрядну одиницю на число, отримую число розрядних одиниць.
  3. Результат подаю в одиницях.
  10 * 4 = 1 дес. * 4 = 4 дес. = 40 100 * 4 = 1 сот. * 4 = 4 сот. = 400

 

 


На підставі застосування переставної властивості, учні знайомляться з правилом множення будь-якого числа на 10 та 100.

Школярам пропонується на підставі переставної властивості дії множення, обчислити значення добутків:

2 * 10 = 10 * 2 = 20

9 * 100 = 100 * 9 = 900

Далі учням пропонується порівняти приклади у кожному стовпчику з метою формування правила множення будь-якого числа на 10 та 100:

5 * 10 = 50 3 * 100 = 300

7 * 10 = 70 6 * 100 = 600

8 * 10 = 80 8 * 100 = 800

- Що спільного в прикладах першого стовпчика? (В них однакові другі множники – це число 10)

- Порівняйте в кожній рівності першого стовпчика першій множник і добуток; другий множник і добуток. (Перший множник – це перша цифра добутку; в другому множнику, числі 10, один нуль, добутку справа, так само, один нуль.)

- Як можна отримати результат? (Можна к першому множнику приписати справа один нуль.)

- Чому треба приписали лише один нуль? (Тому що в числі 10, лише один нуль.)

- Сформулюйте правило. (Щоб помножити будь-яке число на 10, треба к цьому числу справа приписати один нуль.)

Аналогічно працюємо над правилом множення на 100: щоб помножити будь-яке число на 100, треба к цьому числу справа приписати два нулі.

Корисно зробити висновок: кількість нулів, які потрібно дописати до числа залежить від кількості нулів в розрядній одиниці. Виходячи з цього, якщо будемо множити на 1000, скільки нулів треба дописати до числа? (Три)...

П равила ділення круглих чисел на 10 та 100 вводиться наступним чином: з кожного прикладу на множення числа на 10 (100) складається лише один приклад на ділення на 10 (100), і на підставі порівняння ділених з дільниками і часток, учні дістають висновку:

4 * 10 = 407 * 10 = 705 * 100 = 500

40: 10 = 4 70: 7 = 10 500: 100 = 5

Щоб поділити число, яке закінчується нулями на 10, треба від цього числа відкинути справа один нуль; щоб поділити на 100, треба відкинути справа два нулі.

Корисно зробити висновок: кількість нулів, які потрібно відкинути від числа залежить від кількості нулів в розрядній одиниці. Скільки ж нулів треба відкинути справа в числі при діленні на 1000?...

Ознайомлення з випадками ділення розрядних чисел на одноцифрові, коли в частці отримуємо розрядну одиницю відбувається на підставі обчислення частки розрядного числа та одноцифрового способом укрупнення розрядних одиниць. Тому на етапі актуалізації слід повторити зміст способу укрупнення розрядних одиниць і правило ділення числа на само себе (а: а = 1).

       
 
80: 8 = 10 8 дес.: 8 = 1 дес.
 
800: 8 = 100 8 сот.: 8 = 1 сот.

 

 


Ділячи 8 десятків (8 сотень) на 8 ми виконуємо ділення на рівні частини, тому в кожній із таких частин міститься по 1 десятку (1 сотні).

 
 
Пам’ятка А Ділення способом укрупнення розрядних одиниць.
  1. Замінюю кругле число більш крупною розрядною одиницею: дес. (сот.)
  2. Ділю число розрядних одиниць на число, отримую одну розрядну одиницю.
  3. Результат подаю в одиницях.
  60: 6 = 6дес.: 6 = 1 дес. = 10 600: 6 = 6 сот.: 6 = 1 сот. = 100

 


Множення і ділення розрядних чисел на одноцифрове число.

 

При вивченні множення і ділення розрядних чисел на одноцифрове число застосовується, перед усім, спосіб укрупнення розрядних одиниць. Тому, на етапі підготовчої роботи слід актуалізувати:

- уміння заміняти розрядні числа більш крупними лічильними одиницями (60 = 6дес., 600 = 6 сот.);

- знання таблиць множення і ділення.

Також треба повторити зміст способу укрупнення розрядних одиниць при множенні і діленні виду:

       
 
10 * 3 = 1дес. * 3 = 3 дес. = 30
 
80: 8 = 8 дес.: 8 = 1 дес. =10  

 

 


Ознайомлення. Після розв’язування кількох аналогічних прикладів, перед учнями можна поставити проблемні завдання:

30 * 3

 


Порівняти даний добуток з попередніми добутками. Чим вони відрізняються? (В попередніх добутках перший множник – це число 10, 100.) Чим вони схожі? (В усіх добутках перший множник є круглим числом, а другий множник – одноцифрове число.) Як ми міркували для обчислення значень попередніх добутків? (Ми 10, 100 заміняли більш крупними розрядними одиницями: десятками або сотнями, множили 1 розрядну одиницю на число і отримували число розрядних одиниць.)Як обчислити значення добутку? Чи можна міркувати аналогічно?

30 * 3 = 3дес. * 3 = 9 дес. = 90
Учні пропонують замінити кругле число 30 більш крупними лічильними одиницями – десятками: 30 = 3 дес.; помножити число десятків на 3:

 

 

Далі з’ясовується, що по кроках треба робити для обчислення значення такого добутку, і формулюється пам’ятка.

Після цього учні переносять даний спосіб міркування на приклади множення розрядного трицифрового числа на одноцифрове число:

 
 

 

 


Наступне проблемне запитання: “ Чи можна так само міркувати при діленні розрядного числа на одноцифрове число?”

 
 

 


Порівнюючи приклади на множення і ділення, учні встановлюють, що в обох випадках ми множимо або ділимо розрядне число на одноцифрове. Можна визначити, що є спільного в міркуваннях при множенні і при діленні розрядних чисел на одноцифрове число. (В обох випадках розрядне число замінюємо більш крупними розрядними одиницями: десятками або сотнями, а потім множимо або ділимо число розрядних одиниць на одноцифрове число, в результаті отримуємо число, виражене в розрядних одиницях: десятках або сотнях; відповідь записуємо в одиницях.)

Пропонуємо узагальнену пам’ятку:

 
 
Пам’ятка розрядного числа на одноцифрове число. Прийом укрупнення розрядних одиниць.  
  1. Замінюю розрядне число більш крупними розрядними одиницями.
  2. число розрядних одиниць на одноцифрове число; отримую результат, виражений в тих самих розрядних одиницях.
  3. Подаю результат в одиницях.
  40 * 2 = 4 дес. * 2 = 8 дес. = 80 40: 2 = 4 дес.: 2 = 2 дес. = 20 400 * 2 = 4 сот. * 2 = 8 сот. = 800 400: 2 = 4 сот.: 2 = 2 сот. = 200

 


Треба зазначити, що існує інший прийом множення і ділення розрядного числа на одноцифрове, але він не пропонується підручником. Даний прийом оснований на правилі множення або ділення добутку на число; наведемо його ООД:

 
 
Пам’ятка розрядного числа на одноцифрове число. Прийом, оснований на добутку на число.  
  1. Замінюю розрядне число добутком числа і розрядної одиниці.
  1. Результат множу на розрядну одиницю.
  40 * 2 = (4 * 10) * 2 = (4 * 2) * 10 = 8 * 10 = 80 40: 2 = (4 * 10): 2 = (4: 2) * 10 = 2 * 10 = 20 400 * 2 = (4 * 100) * 2 = (4 * 2) * 100 = 8 * 100 = 800 400: 2 = (4 * 100): 2 = (4: 2) * 100 = 2 * 100 = 200

 


Діти знайомляться з множенням одноцифрового числа на розрядне число; при чому пропонується два способи міркування:

1. На підставі переставної властивості дії множення

 
 
3 * 20 = 20 * 3 = 60

 


2. На підставі правила множення числа на добуток (сполучної властивості дії

3 * 20 = 3 * 2 * 10 = 6 * 10 = 60
множення)

 

 

 
 
Пам’ятка Множення одноцифрового числа на розрядне число. Прийом, оснований на правилі множення числа на добуток.
  1. Замінюю розрядне число добутком числа і розрядної одиниці.
  2. Перемножую числа.
  3. Отриманий результат множу на розрядну одиницю.
  4 * 20 = 4 * (2 * 10) = (4 * 2) * 10 = 8 * 10 = 80

 


В подальшому навчанні вводяться більш складні випадки множення і ділення розрядного числа на одноцифрове:

 
 
70 * 8 = 7 дес. * 8 = 56 дес. = 560

 

 


Тут в результаті множення десятків отримуємо двоцифрове число десятків.

 
 
420: 6 = 42 дес.: 6 = 7 дес. = 70

 


Тут ми ділимо двоцифрове число десятків, 42 десятки, порівну на 6 частин.

Учні застосовують прийом укрупнення розрядних одиниць, і міркують за відомою їм пам’яткою.

Можна порівняти прості випадки: 40 * 2, 80: 4; з більш складеними: 60 * 2, 120: 4.

 

Ділення числа на добуток.



Поделиться:


Последнее изменение этой страницы: 2016-04-26; просмотров: 1636; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.94.180 (0.008 с.)