Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
Содержание книги
- Теми практичних занять для спеціальності 6.010102 –початкова освіта (2 р.н.).
- Навчальний проект для спеціальності 6.010102 – початкова освіта
- Для особистого контролю за одержанням балів
- Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Операція перетину множин та основні властивості (закони) цієї операції.
- Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1. 19. Задання декартового добутку множин за допомогою графа.
- Малюнок № 1.20. Граф відповідності.
- Розміщення з повтореннями та без повторень.
- Перестановки з повтореннями та без повторення.
- Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- Операція кон'юнкції предикатів.
- Операція еквіваленції предикатів.
- Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів Л.Ейлера.
- Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Модуль іу. «системи числення. Подільність чисел. ».
- Загальна ознака подільності Б. Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- Основна теорема арифметики цілих невід’ємних чисел.
- Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Ознаки подільності на складені числа.
- Відношення порядку на множині невід’ємних раціональних чисел.
- Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Відношення порядку на множині дійсних чисел.
- Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Застосування рівнянь та їх систем до розв’язування текстових задач.
- Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Обернена пропорційність, її властивості та графік.
- Основні геометричні побудови циркулем і лінійкою.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої.
- Побудова правильних многогранників.
- Правильні многогранники та їх види.
- Модуль 7: «елементи геометрії. Величини. ».
- Виведення формул для знаходження площі паралелограма, трикутника, трапеції. Формули для знаходження площ поверхонь просторових геометричних фігур.
9. У попередньому пункті ми довели теорему, яка визначила умови, при яких звичайний дріб перетворюється у десятковий. Цілком закономірно виникає запитання «а як бути у випадках, коли знаменник у канонічному розкладі містить прості множники, відмінні від 2 і 5?». Розглянемо звичайний дріб такий, що n=2m•5k•р, де р – простий множник, відмінний від 2 і 5. На практиці при спробі перетворити такі звичайні дроби у десяткові шляхом ділення чисельника на знаменник доводиться зустрічатися з двома випадками: 1) на певному кроці ділення одна цифра чи група цифр починає повторюватися одразу після коми; 2) на певному кроці ділення одна цифра чи група цифр починає повторюватися не одразу після коми. Наприклад, =0,232323…; =0,2131313…. В таких випадках говорять, що дістаємо нескінченний періодичний десятковий дріб.
Означення: нескінченний десятковий дріб, у якого одна цифра або група цифр весь час повторюється називається нескінченним періодичним дробом.
Означення: одна цифра або група цифр, яка повторюється, називається періодом.
Нескінченні періодичні дроби прийнято позначати так: 0,2131313…=0,2(13), 0,373373373…=0,(373). Число, утворене цифрами, що стоять після коми до періоду, називають доперіодичною частиною. У наведених прикладах: (13) і (373) – це періоди, а число 2 у першому дробові – доперіодична частина. В математиці доведено, що число цифр у періоді нескінченного періодичного дробу не перевищує n-1, де n знаменник звичайного дробу . Серед нескінченних періодичних дробів виділяють чисті та мішані періодичні дроби.
Означення: чистим періодичним дробом називається нескінченний десятковий дріб, у якого період починається одразу після коми.
Означення: мішаним періодичним дробом називається нескінченний десятковий дріб, у якого період починається не одразу після коми.
Таким чином, ми з’ясували, що при перетворенні звичайних дробів у десяткові, ми можемо зустрітися з двома випадками: 1) ділення чисельника на знаменник призводить до скінченного десяткового дробу; 2) ділення чисельника на знаменник призводить до нескінченного десяткового дробу, в якому одна цифра чи група цифр весь час повторюється. Отже, можна стверджувати, що нескінченні періодичні дроби існують. У зв’язку з цим виникає питання про перетворення чистих і мішаних періодичних дробів у звичайні. У математиці доведені теореми, на яких ґрунтуються наступні правила перетворення періодичних дробів у звичайні.
Правило 1: чистий періодичний десятковий дріб дорівнює звичайному дробові, чисельником якого є число, що стоїть у періоді, а знаменником – число, яке записане стількома дев’ятками, скільки цифр у періоді.
Правило 2: мішаний періодичний десятковий дріб дорівнює звичайному дробові, чисельник якого є різниця між числом, що стоїть після коми до кінця періоду, та числом, що стоїть після коми до періоду, а знаменником є число, яке записане стількома дев’ятками, скільки цифр у періоді, та стількома нулями, скільки є цифр до періоду.
Вправа: перетворити періодичні дроби у звичайні: 0,(243); 0, 134(27).
Розв’язання.
Перший періодичний дріб є чистим, а тому використаємо перше правило: 0,(243)= . Тепер слід скоротити чисельник і знаменник на їхній найбільший спільний дільник. Ми проведемо це скорочення поступово. Оскільки 243 9 і 999 9, то скоротимо спочатку на 9. Маємо дріб . Ще можна скоротити на 3, тоді . Оскільки 37 – просте число, то – нескоротний дріб. Таким чином, 0,(243)= . Для другого дробу, який є мішаним періодичним, маємо 0,134(27)= = . Пропонуємо студентам самостійно провести скорочення цього звичайного дробу, якщо це можливо!
Таким чином, у цьому пункті ми з’ясували, що кожний звичайний дріб можна представити у вигляді скінченного чи нескінченного періодичного дробу. В математиці також доведено, що кожний скінченний десятковий дріб можна представити у вигляді нескінченного періодичного десяткового дробу з періодом 0 або з періодом 9. Отже, множину раціональних чисел можна розглядати як множину періодичних десяткових дробів. Це означає, що в ній будуть справедливими всі ті теореми і правила, які доводилися для множини раціональних чисел.
|