Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
Содержание книги
- Розподіл годин по семестрах для спеціальності 6. 010102- початкове навчання.
- Теми практичних занять для спеціальності 6.010102 –початкова освіта (2 р.н.).
- Навчальний проект для спеціальності 6.010102 – початкова освіта
- Для особистого контролю за одержанням балів
- Операція об’єднання (додавання) множин та основні властивості (закони) цієї операції.
- Операція перетину множин та основні властивості (закони) цієї операції.
- Операція доповнення до даної та універсальної множини та основні властивості (закони) цих операцій.
- Малюнок № 1. 19. Задання декартового добутку множин за допомогою графа.
- Малюнок № 1.20. Граф відповідності.
- Розміщення з повтореннями та без повторень.
- Перестановки з повтореннями та без повторення.
- Поняття як форма мислення, зміст і обсяг поняття та зв'язок між ними.
- Діаграма № 2.1. Відношення часткового збігу між поняттями.
- Поняття предиката, його позначення та область визначення. Поняття кванторів існування та загальності, їх позначення та зв'язок між ними.
- Операція кон'юнкції предикатів.
- Операція еквіваленції предикатів.
- Поняття теореми, її будова. Види теорем (дана, обернена, протилежна, обернена до протилежної, спряжені теореми) та зв'язок між ними.
- Поняття міркування, правильні та неправильні міркування. Перевірка правильності міркувань з допомогою кругів Л.Ейлера.
- Визначення добутку на множині цілих невід’ємних чисел, його існування та єдиність. Операція множення та її основні властивості (закони).
- Аксіоматичний метод у математиці та суть аксіоматичної побудови теорії.
- Аксіоматичне означення додавання цілих невід’ємних чисел в аксіоматичній теорії. Таблиці і закони додавання.
- Порівняння відрізків, дії над відрізками. Натуральне число як результат вимірювання величини. Натуральне число як міра величини. Натуральне число як міра відрізка.
- Означення операцій додавання і віднімання чисел, що розглядаються як міри відрізків. Трактування множення і ділення, які розглядаються як міри відрізків.
- Позиційні та непозиційні системи числення, запис чисел у позиційних і непозиційних системах числення.
- Алгоритми арифметичних операцій над цілими невід’ємними числами у десятковій системі числення.
- Модуль іу. «системи числення. Подільність чисел. ».
- Загальна ознака подільності Б. Паскаля. Ознаки подільності цілих невід’ємних чисел на 2, 3, 4, 5, 9, 25.
- Прості і складені числа. Нескінченність множини простих чисел. Решето Ератосфена.
- Основна теорема арифметики цілих невід’ємних чисел.
- Обчислення нсд і нск способом канонічного розкладу на прості множники та за алгоритмом Евкліда.
- Ознаки подільності на складені числа.
- Відношення порядку на множині невід’ємних раціональних чисел.
- Десяткові дроби, їх порівняння, операції над ними. Перетворення десяткових дробів у звичайні та звичайних у десяткові.
- Додатні раціональні числа як нескінченні періодичні десяткові дроби. Чисті та мішані періодичні дроби та їх перетворення у звичайні.
- Множина раціональних чисел, модуль раціонального числа, операції над раціональними числами. Властивості множини раціональних чисел.
- Відношення порядку на множині дійсних чисел.
- Числові вирази та їх види. Значення числового виразу та порядок обчислення значень числового виразу.
- Тотожні перетворення виразів. Тотожності. Виведення основних тотожностей.
- Рівносильні рівняння. Теореми про рівносильність рівнянь.
- Рівняння з двома змінними. Рівняння лінії. Рівняння прямої та їх види.
- Малюнок № 6.1. Графік рівняння кола.
- Системи та сукупності рівнянь з двома змінними та способи (алгебраїчні та графічні) їх розв’язування.
- Застосування рівнянь та їх систем до розв’язування текстових задач.
- Системи та сукупності нерівностей з однією змінною та способи їх розв’язування. Нерівності та системи нерівностей з двома змінними, графічний спосіб їх розв’язування.
- Обернена пропорційність, її властивості та графік.
- Основні геометричні побудови циркулем і лінійкою.
- Побудова прямої, яка проходить через дану на ній точку, перпендикулярно до даної прямої.
- Побудова правильних многогранників.
- Правильні многогранники та їх види.
- Модуль 7: «елементи геометрії. Величини. ».
1. Вивчення будь-якого розділу математики супроводжується доведенням тверджень, серед яких істотну роль відіграють теореми, тобто твердження, в справедливості яких потрібно переконатися шляхом доведення. В шкільному курсі математики вивчаються теореми, які мають різноманітну форму запису. Для того, щоб успішно формувати у школярів уявлення про теорему та способи її доведення, необхідно знати форми запису, будову та види теорем. Ці знання ґрунтуються на поняттях висловлення та операцій над ними, предикатів та кванторів. Якщо проаналізувати більшість теорем, то можна помітити, що вони складаються з таких структурних компонентів: 1) пояснювальна частина, в якій роз’яснюється, для яких об’єктів доводиться теорема; 2) умова теореми, в якій вказується на ті поняття, що використовуються в теоремі, та яка може мати різноманітну структуру (бути простим висловленням; бути кон’юнкцією, диз’юнкцією, запереченням тощо кількох висловлень); 3) висновок теореми. Дуже часто теореми формулюють в імплікативній формі, коли пояснювальна частина символічно зображається у формі квантора загальності чи існування, а умова і висновок – у вигляді предикатів. Зазначимо, що при словесному формулюванні теореми, її пояснювальна частина не завжди формулюється явно, але її можна виділити. Наприклад, у формулюванні теореми «якщо точка лежить на перпендикулярі до середини відрізка, то вона рівновіддалена від кінців цього відрізка» пояснювальна частина «кожна точка перпендикуляра до середини відрізка» не сформульована явно.
Як правило, в теоремі присутні як мінімум два предикати, один із яких виражає умову теореми, а інший – висновок. Предикати, які виражають умову чи висновок, можуть бути складеними. Пояснювальна частина теореми символічно може записуватися у вигляді кванторів існування чи загальності. Проілюструємо це на прикладі такої теореми «для будь-яких дійсних чисел а, b, с, якщо а>в і b>с, то а>с». У цій теоремі пояснювальна частина буде такою «для будь-яких дійсних чисел», а тому символічно її можна записати так: ("а,b,сєR). Умовою теореми буде кон’юнкція предикатів (а>bÙb>с), а висновком теореми – предикат а>с. Отже, символічно теорема запишеться так: ("а,b,сєR)((а>bÙb>с)→(а>с)). Таким чином, умова теореми є складеним предикатом (кон’юнкцією двох предикатів), а висновок теореми є простий предикат. У пояснювальній частині можуть бути одночасно представлені квантори існування і загальності. Наприклад: для будь–яких двох дійсних чисел a та b існує єдине число с, таке, що а-в=с.
Оскільки практично кожну теорему можна представити у вигляді імплікації двох предикатів, то, пригадуючи операцію імплікації предикатів, зазначимо, що є чотири види імплікацій. Саме тому можна твердити, що можна виділити чотири види теорем: 1) дана або пряма теорема, яку символічно можна записати так: А(х)→В(х); 2) обернена теорема, яку символічно можна записати так: В(х)→А(х); 3) протилежна теорема, яку символічно записують так: А(х)→В(х); 4) протилежна до оберненої або обернена до протилежної, яку символічно записують так: В(х)→А(х).
Розглядаючи імплікацію висловлень і предикатів, за допомогою побудови таблиці істинності ми довели, що серед чотирьох видів імплікацій є дві пари рівносильних, а саме: 1) (А(х)→В(х))≡(В(х)→А(х)); 2) (В(х)→А(х))≡(А(х)→В(х)). Із цих рівностей випливає, що не потрібно доводити всі чотири теореми, а слід довести лише дві, тобто по одній з кожної пари. Причому в математиці доводять з кожної пари ту теорему, яку легше довести.
Розглянемо способи утворення вказаних видів теорем на прикладі наступної «якщо один із співмножників добутку дорівнює нулю, то добуток дорівнює нулю» - дана теорема, яка істинна. Щоб утворити теорему, обернену до даної поміняємо місцями умову і висновок. Одержимо теорему «якщо добуток двох співмножників дорівнює нулю, то один із співмножників добутку дорівнює нулю» - обернена теорема, яка хибна, бо нулю можуть дорівнювати обидва співмножники. Щоб сформулювати протилежна теорему, слід заперечити умову та висновок даної теореми. В цьому випадку отримуємо «якщо жоден із співмножників не дорівнює нулю, то добуток не дорівнює нулю» - протилежна теорема, яка істинна. Сформулюємо четверту теорему «якщо добуток не дорівнює нулю, то жоден із співмножників не дорівнює нулю» - протилежна до оберненої чи обернена до протилежної, яка істинна.
|