ЗНАЕТЕ ЛИ ВЫ?

Малюнок № 1.19. Задання декартового добутку множин за допомогою графа.



Розглянемо властивості декартового добутку множин.

1. А´В¹В´А – ця нерівність говорить про те, що декартів добуток множин немає властивості комутативності.

2. (АÈВ)´С=(А´С)È(В´С).

3. А´(ВÈС)=(А´В)È( А´С).

4. (АÇВ)´С=(А´С)Ç(В´С).

5. А´(ВÇС)=(А´В)Ç(А´С).

6. (А\В)´С=(А´С)\(В´С).

7. А´(В\С)=(А´В)\(А´С).

Властивості 1-7 доводяться за допомогою міркувань. Покажемо це на прикладі останньої властивості. У першій частині доведемо, що кожен елемент лівої частини, яка складається із впорядкованих пар, належить правій частині. Нехай пара (х;у)ÎА´(В\С). Згідно означення декартового добутку це означає, що хÎА і уÎВ\С. Якщо уÎВ\С, то за означенням різниці множин уÎВ і уÏС. Оскільки хÎА і уÎВ, то за означенням декартового добутку множин (х,у)ÎА´В. Оскільки хÎА і уÏС, то (х,у)ÏА´С. Якщо (х,у)ÎА´В і (х,у)ÏА´С, то згідно з означенням операції різниці множин (х,у)Î(А´В)\(А´С), тобто правій частині. Пару (х,у) у лівій частині ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якої пари, що належить лівій частині. Таким чином, множина А´(В\С) є підмножиною множини (А´В)\(А´С), тобто А´(В\С)Ì(А´В)\(А´С). Отже, першу частину доведено.

У другій частині доведемо, що кожен елемент правої частини є елементом лівої. Нехай пара (а;в)Î(А´В)\(А´С). Згідно означення різниці, (а;в)Î(А´В) і (а;в)Ï(А´С). Звідси аÎА і вÏС. Якщо (а;в)Î(А´В), то за означенням декартового добутку множин аÎА і вÎВ. Оскільки вÎВ і вÏС, то за означенням різниці множин вÎВ\С. Якщо аÎА і вÎВ\С, то за означенням декартового добутку множин (а;в)ÎА´(В\С), тобто лівій частині. Пару (а;в) у правій частині ми вибирали довільно, а тому наші міркування можна повторити відносно будь-якої пари, що належить правій частині. Таким чином, множина (А´В)\(А´С) є підмножиною множини А´(В\С), тобто (А´В)\(А´С)ÌА´(В\С). Отже, другу частину доведено.

Таким чином, у першій частині ми довели, що (А´(В\С))Ì((А´В)\(А´С)), а у другій – ((А´В)\(А´С))Ì(А´(В\С)). Звідси на основі означення рівності множин маємо рівність А´(В\С)=(А´В)\(А´С), тобто справедливість властивості доведено повністю.

Спробуємо знайти залежність, яка б допомогла шукати число елементів декартового добутку множин, якщо відомо число елементів вихідних множин. Нехай А={1, 2, 3} і В={а, в}. Утворимо множину А´В={(1;а ), (1;в), (2;в), (3;а), (3;в)}. Легко бачити, що n(А)=3, n(В)=2 і n(А´В)=6, тобто n(А´В)=n(А)·n(В). У математиці для загального випадку доведено теорему: „Число елементів декартового добутку множин А1, А2, А3, ... ,Ак, що мають відповідно n1, n2, n3,...,nk елементів дорівнює добутку чисельностей цих множин, тобто n(А1´А2´А3´…´Ак)=n(А1)n(А2)n(А3)…n(Ак)=n1,n2,n3, ..., nk”.

Як же визначити число елементів об’єднання двох скінченних множин? Для цього доведеться розглядати два випадки: 1) множини А і В не мають спільних множин, тобто АÇВ=Æ; 2) множини А і В мають спільні елементи, тобто АÇВ¹Æ. У першому випадку використовується формула n(АÈВ)=n(А)+n(В), а в другому - n(АÈВ)=n(А)+n(В)–n(АÈВ). Чи можна поширити ці формули на будь-яке число елементів? – математика дає на це ствердну відповідь, тобто справедлива формула: n(А1ÈА2ÈА3È...ÈАк)=n(А1)+n(А2)+n(А3)+...+n(Ак), коли множини попарно не перетинаються.

 

 

МОДУЛЬ 1: «Множини. Відповідності Відношення.».

Змістовний модуль1.2. «Відповідності та відношення.».

ПЛАН.

1. Поняття відповідності між елементами двох множин, бінарні відповідності, їх позначення та способи задання. Множина відправлення та множина прибуття відповідності. Образи і прообрази елементів і множин, їх позначення.

2. Типи відповідностей (порожня, повна, всюди визначена у множині відправлення, сюр’єктивна, інє’ктивна, функціональна відповідність або функція, відображення, бієктивна). Обернені функції та відображення.

3. Бінарні відношення між елементами однієї множини, способи їхнього задання та їх властивості: рефлексивність, антирефлексивність, симетричність, асиметричність, антисиметричність, транзитивність, антитранзитивність.

4. Відношення еквівалентності та порядку, їх властивості. Впорядковані множини. Зв'язок відношення еквівалентності з розбиттям множини на класи, що попарно не перетинаються.

ЛІТЕРАТУРА: [1] –с. 3-40; [2] –с. 11-88; [3] –с. 5-56.

Поняття відповідності між елементами двох множин, бінарні відповідності, їх позначення та способи задання. Множина відправлення та множина прибуття відповідності. Образи і прообрази елементів і множин, їх позначення.

1. Теорія множин вивчає множини та операції над ними. Розглядаючи це не цікавляться, як правило, природою елементів, із яких складається множина, способом задання множин і порядком розміщення елементів у множині. Разом з тим, математична теорія завжди прагне знайти своє застосування до розв’язування практичних задач. Як же це відбувається з теорією множин? – її застосовують до побудови математичних теорій, до розв’язування практичних завдань, розглядаючи множини, між елементами яких існують ті чи інші відношення. Прикладом таких відношень у повсякденному житті є родинні відношення між людьми, відношення на роботі між колегами, в математиці – це відношення паралельності, подільності, рівності тощо.

Слід зазначити, що поняття відповідності, відношення розуміють майже однозначно. Однак таке розуміння носить інтуїтивний, а не точний характер. Для вивчення різноманітних відношень між математичними об’єктами інтуїтивне поняття «відношення» слід уточнити, але так, щоб воно набуло цілком конкретного математичного змісту і в той же час не втратило своєї інтуїтивної сутності. Розглянемо дві скінченні множини Х={2, 4, 6, 8} і У={2, 3}. Утворимо із елементів цих множин впорядковані пари так, щоб перша компонента пари ділилася націло на другу компоненту. Отже, матимемо таку множину пар А={(2;2), (4;2), (6;2), (8;2), (6;3)}. Утворимо тепер декартів добуток множин Х і У: Х×У={(2;2), (2;3), (4;2), (4;3), (6;2), (6;3), (8;2), (8;3)}. Що можна сказати про множини А і Х×У? – множина А є підмножиною множини Х×У, тобто АÌХ×У. Враховуючи це, можна ввести таке означення поняття відношення:

Означення: бінарним відношенням, визначеним між елементами множин Х і У, називається будь-яка підмножина декартового добутку цих множин Х і У.

Означення: відповідністю між множинами Х і У називається трійка множин Х, У і GÌХ×У.

Множину Х називають множиною відправлення або областю визначення відповідності, множину У – множиною прибуття або множиною значень відповідності, а множину впорядкованих пар GÌХ×У, які перебувають у відповідності, - графіком відповідності. Домовилися відповідності позначати малими буквами грецького алфавіту α, β, γ, δ, ε та ін. Символічний запис α={GÌХ×У} означає, що задано відповідність між елементами множин Х і У. Якщо елементи пари (х;у) перебувають у відповідності α, то це позначають так: хαу і читають «елемент у відповідає елементу х у відповідності α». Інколи відповідності позначають і великими буквами латинського алфавіту R, S, T, наприклад: хRу, аSв тощо. Слід зазначити, що уже в початкових класах діти знайомляться з відповідностями та відношеннями. Так, молодші школярі розглядають відношення рівності, більше, менше тощо.

Коли ж відповідність вважається заданою та які способи задання відповідностей існують? – тоді, коли відносно будь-якої пари можна сказати належить чи не належить вона відповідності. Оскільки відповідність є підмножиною декартового добутку множин, то цілком логічно припустити, що відповідності можна задати всіма тими способами, якими задавався декартів добуток множин, а саме: 1) переліком всіх пар елементів, які перебувають у цій відповідності; 2) за допомогою характеристичної властивості; 3) таблицею; 4) рівнянням; 5) графіком; 6) графом. Не всі вказані способи задання відповідностей рівнозначні, а найзручнішим буде той, який потрібен саме для конкретної відповідності (пропонуємо виконати завдання № 38 для самостійної роботи!).

Отже, виникає запитання «чи однакові всі відповідності та як виділяти в них різні типи?». Перед тим, як знайти відповіді на ці запитання, розглянемо питання про образи та прообрази елементів у відповідності.

Означення: образом елемента аєА у відповідності αÌА×В називають множину тих елементів вєВ, для яких (а;в)єα.

Означення: прообразом елемента вєВ у відповідності αÌА×В називають множину тих елементів аєА, для яких (а;в)єα.

Домовилися образ елемента аєА у відповідності αÌА×В позначати α(а). Прообраз елемента вєВ при цій же відповідності αÌА×В будемо позначати так: α-1(а). Нехай відповідність задана графом (див. малюнок № 1.20.).

Користуючись малюнком, знайдемо образи і прообрази елементів, які перебувають у відповідності, заданій графом. α(1)={4, 8}, α(2)=Ø, α(3)={2, 4}, α(4)={2, 6, 8}, α(5)={4}, α-1(2)={2, 3, 4}, α-1(4)={2, 4, 5}, α-1(6)= Ø, α-1(8)={1, 4}. Із наведеного прикладу видно, що не всі елементи множини А мають образи у множині В. Так само як і не всі елементи множини В мають прообрази у множині А. враховуючи попереднє зауваження із базових множин А і В можна виділити дві підмножини: 1) підмножину α(А)={в/вєВ і існує таке аєА, що аαв}. Її називають множиною значень відповідності α і позначають α(А)ÌВ; 2) підмножину α-1(В)={а/аєА і існує таке вєВ, що аαв}. Цю множину називають областю визначення відповідності α і позначають α-1(В)ÌА. Таким чином, множина значень відповідності α(А) є об’єднанням образів всіх елементів множини А, а область визначення відповідності α-1(В) є об’єднанням прообразів усіх елементів множини В.





Последнее изменение этой страницы: 2016-04-26; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.227.247.17 (0.006 с.)