Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 1. 6. Показатели вариации и анализ частотных распределений (рядов распределения).Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Понятие и сущность вариации Вариация — это различие в значениях какого-либо признака у разных единиц данной совокупности в один и тот же период или момент времени. Например, работники фирмы различаются по доходам, затратам времени на работу, росту, весу, любимому занятию в свободное время и т.д. Она возникает в результате того, что индивидуальные значения признака складываются под совокупным влиянием разнообразных факторов (условий), которые по-разному сочетаются в каждом отдельном случае. Таким образом, величина каждого варианта объективна. Исследование вариации в статистике имеет большое значение, помогает познать сущность изучаемого явления. Особенно актуально оно в период формирования многоукладной экономики. Измерение вариации, выяснение ее причины, выявление влияния отдельных факторов дает важную информацию (например, о продолжительности жизни людей, доходах и расходах населения, финансовом положении предприятия и т.п.) для принятия научно-обоснованных управленческих решений. Средняя величина дает обобщающую характеристику признака изучаемой совокупности, но она не раскрывает строения совокупности, которое весьма существенно для ее познания. Средняя не показывает, как располагаются около нее варианты осредняемого признака, сосредоточены ли они вблизи средней или значительно отклоняются от нее. Средняя величина признака в двух совокупностях может быть одинаковой, но в одном случае все индивидуальные значения отличаются от нее мало, а в другом – эти отличия велики, т.е. в одном случае вариация признака мала, а в другом — велика, это имеет весьма важное значение для характеристики надежности средней величины. Чем больше варианты отдельных единиц совокупности различаются между собой, тем больше они отличаются от своей средней, и наоборот, — чем меньше варианты отличаются друг от друга, тем меньше они отличаются от средней, которая в таком случае будет более реально представлять всю совокупность. Вот почему ограничиваться вычислением одной средней в ряде случаев нельзя. Нужны и другие показатели, характеризующие отклонения отдельных значений от общей средней.
Показатели вариации К показателям вариации относятся: размах вариации, среднее линейное отклонение, дисперсия, среднее квадратическое отклонение, коэффициент вариации. Самым элементарным показателем вариации признака является размах Xmax-Xmin (1.6.1.) Однако размах вариации показывает лишь крайние отклонения признака и не отражает отклонений всех вариантов в ряду. При изучении вариации нельзя ограничиваться только определением ее размаха. Для анализа вариации необходим показатель, который отражает все колебания варьирующего признака и даёт обобщённую характеристик). Простейший показатель такого типа — среднее линейное отклонение. Среднее линейное отклонение ( представляет собой среднюю арифметическую абсолютных значений отклонений отдельных вариантов от их средней арифметической (при этом всегда предполагают, что среднюю вычитают из варианта: ). Среднее линейное отклонение: для несгруппированных данных (1.6.2) где n- число членов ряда; для сгруппированных данных (1.6..3) где - сумма частот вариационного рада. В формулах (4.2) и (4.3) разности в числителе взяты по модулю, (иначе в числителе всегда будет ноль — "О" — алгебраическая сумма отклонений вариантов от их средней арифметической). Поэтому среднее линейное отклонение как меру вариации признака применяют в статистической практике редко (только в тех случаях, когда суммирование показателей без учета знаков имеет экономический смысл). С его помощью например, анализируется состав работающих, ритмичность производства, оборот внешней торговли. Дисперсия признака представляет собой средний квадрат отклонений вариантов от их средней величины, она вычисляется по формулам простой и взвешенной дисперсий (в зависимости от исходных данных): простая дисперсия для несгруппированных данных либо имеющих равные частоты: (1.6.4.) взвешенная дисперсия для вариационного ряда с неравными частотами: (1.6.5.) Техника вычисления дисперсии по формулам (6.2.4), (6.2.5) достаточно сложна, а при больших значениях вариантов и частот может быть громоздкой. Расчет можно упростить, используя свойства дисперсии (доказываемые в математической статистике): первое — если все значения признака уменьшить на одну и ту же второе — если все значения признака уменьшить в одно и то же число раз (i раз), то дисперсия соответственно уменьшится в раз. третье-средний квадрат отклонений от любой величины А (отличной от средней арифметической) больше дисперсии признака на квадрат разности между средней арифметической и величиной А (свойство минимальности) Используя свойства дисперсии, получим следующую формулу вычисления дисперсии в вариационных радах с равными интервалами по способу моментов: (1.6.6) где — дисперсия, исчисленная по способу моментов; i — величина интервала; — новые (преобразованные) значения вариантов (А — условный ноль, в качестве которого удобно использовать середину интервала, обладающего наибольшей частотой); - момент второго порядка; (1.6.7.) - квадрат момента первого порядка.(1.6.8.) На основании последнего свойства дисперсии в случае когда А приравнивается нулю и, следовательно, не вычисляются отклонения, формула дисперсии примет вид: (1.6.9.) Расчет дисперсии по вышеприведенной формуле менее трудоемок и может использоваться в рядах распределения с любым (равным и неравным) интервалом. Дисперсия имеет большое значение в экономическом анализе, В математической статистике важную роль для характеристики качества статистических оценок играет их дисперсия. Ниже, в частности, будет показано разложение дисперсии на соответствующие элементы,позволяющие оценить влияние различных факторов, обуславливающих вариацию признака; использование дисперсии для построения показателей тесноты корреляционной связи при оценке результатов выборочных наблюдений. Среднее квадратическое отклонение () равно корню квадратному из дисперсии: для несгруппированных данных (1.6.10.) для вариационного ряда сгруппированных данных (1.6.11.) Среднее квадратическое отклонение — это обобщающая характеристика размеров вариации признака в совокупности; оно показывает на сколько в среднем отклоняются конкретные варианты от их среднего значения; является абсолютной мерой колеблемости признака и выражается в тех же единицах, что и варианты, поэтому экономически хорошо интерпретируется. Среди множества варьирующих признаков существуют признаки, которыми одни единицы совокупности обладают, а другие не обладают. Такие признаки называются альтернативными. Примером таких признаков являются: наличие бракованной продукции, ученая степень у преподавателя, наличие академической задолженности у студента и др. Обозначим: 1 — наличие интересующего нас признака; 0 — его отсутствие: р — доля единиц, облагающих данным признаком; q — доля единиц, не обладающих данным признаком; тогда p+q=1. Исчислим среднее значение альтернативного признака и его дисперсию. Среднее значение альтернативного признака (1.6.12.) так как р + q = 1. Следовательно, средняя арифметическая величина альтернативного признака равна доле единиц обладающих признаком. Дисперсии альтернативного признака. Подставив в формулу дисперсии q = 1 -р, получим (1.6.13.)
Таким образом, - дисперсия альтернативного признака равна произведению доли единиц, обладающих признаком, на долю единиц, не обладающих данным признаком. Среднее квадратическое отклонение альтернативного признака (1.6.14.) При вычислении средних величин и дисперсии для интервальных рядов распределения истинные значения признака заменяются центральными (серединными) значениями интервалов, которые отличаются от средней арифметической значений, включенных в интервал. Это приводит к появлению систематической погрешности при расчете дисперсии. В.Ф.Шеппард установил, что погрешность в расчете дисперсии, вызванная применением сгруппированных данных, составляет 1/12 квадрата величины интервала (T.e.i2/12), как в сторону занижения, так и в сторону завышения величины дисперсии. Поправка Шеппарда должна применяться, если распределение близко к нормальному, относится к признаку с непрерывным характером вариации, построено по большому количеству исходных данных (n >500), Однако исходя из того, что в ряде случаев обе погрешности, действуя в противоположны направлениях, нейтрализуются и компенсируют друг друга, можно иногда отказаться от введения поправок. Чем меньше значение дисперсии и среднего квадратического отклонения, тем однороднее совокупность и тем более типичной будет средняя величина. В статистической практике часто возникает необходимость сравнения вариаций различных признаков. Например, большой интерес представляет сравнение вариаций возраста рабочих и их квалификации, стажа работы и размера заработной платы, себестоимости и прибыли, стажа работы и производительности труда и т.д. Для подобных сопоставлений показатели абсолютной колеблемости признаков непригодны: нельзя сравнивать колеблемость стажа работы, выраженного в годах, с вариацией заработной платы, выраженной в рублях. Для осуществления такого рода сравнений, а также сравнений колеблемости одного и того же признака в нескольких совокупностях с различной средней арифметической используют относительный показатель вариации — коэффициент вариации. Относительные показатели вариации представляют собой отношение абсолютных показателей вариации к средней арифметической. Наиболее распространенными из них являются коэффициент вариации и линейный коэффициент вариации. Коэффициент вариации представляет собой выраженное в процентах отношение среднего квадратического отклонения к средней арифметической: (1.6.15.) Линейный коэффициент вариации это отношение среднего линейного отклонения к средней арифметической: (1.6.16.) Коэффициент вариации используют не только для сравнительной оценки вариации единиц совокупности, но и как характеристику однородности совокупности. Совокупность считается количественно однородной, если коэффициент вариации не превышает 33 %. Вариация признака обусловлена различными факторами, некоторые из этих факторов можно выделить, если статистическую совокупность разбить на группы по какому-либо признаку. Тогда, наряду с изучением вариации признака по всей совокупности в целом, становится возможным изучить вариацию для каждой из составляющих ее группы, а также и между этими группами. В простейшем случае, когда совокупность расчленена на группы по одному фактору, изучение вариации достигается посредством исчисления и анализа трех видов дисперсий: общей, межгрупповой и внутригрупповой. Общая дисперсия измеряет вариацию признака по всей совокупности под влиянием всех факторов, обусловивших эту вариацию. Она равна среднему квадрату отклонений отдельных значений признака х от общей средней и может быть вычислена как простая дисперсия (по формуле (4.4) или взвешенная дисперсия по формуле (4,5). Межгрупповая дисперсия характеризует систематическую вариацию результативного порядка, обусловленную влиянием признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений групповых (частных) средних , от общей средней и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно: (1.6.17.) (1.6.18.) Внутригрупповая (частном) дисперсия , отражает случайную вариацию, т.е. часть вариации, обусловленную влиянием неучтенных факторов и не зависящую от признака-фактора, положенного в основание группировки. Она равна среднему квадрату отклонений отдельных значений признака внутри группы х от средней арифметической этой группы , (групповой средней) и может быть исчислена как простая дисперсия или как взвешенная дисперсия по формулам, соответственно: (1.6.19.) (1.6.20.) На основании внутригрупповых дисперсий по каждой группе, т.е. на основании , можно определить среднюю из внутригрупповых дисперсий: (1.6.21.) Согласно правилу сложения дисперсий общая дисперсия равна сумме средней из внутригрупповых и межгрупповой дисперсий: (1.6.22.) Пользуясь правилом сложения дисперсий, можно всегда по двум известным дисперсиям определить третью - неизвестную, а также судить о силе влияния группировочного признака. В статистическом анализе широко используется эмпирический коэффициент детерминации ( ) — показатель, представляющий собой долю межгрупповой дисперсии в общей дисперсии результативного признака и характеризующий силу влияния группировочного признака на образование общей вариации: (1.6.23.) Эмпирический коэффициент детерминации показывает долю вариации результативного признака у под влиянием факторного признака х (остальная часть обшей вариации у обуславливается вариацией прочих факторов). При отсутствии связи эмпирический коэффициент детерминации равен нулю, а при функциональной связи — единице. Эмпирическое корреляционное отношение — это корень квадратный из эмпирического коэффициента детерминации: (1.6.24.) оно показывает тесноту связи между группировочным и результативным признаками. Эмпирическое корреляционное отношение (η), как и ( ), может принимать значения от 0 до 1. Если связь отсутствует, то корреляционное отношение равно нулю, т.е. все групповые средние будут равны между собой, межгрупповой вариации не будет. Значит, группировочный признак никак не влияет на образование общей вариации. Если связь функциональная, то корреляционное отношение будет равно единице. В этом случае дисперсия групповых средних равна общей дисперсии (), т.е. внутригрупповой вариации не будет. Это означает, что группировочный признак целиком определяет вариацию изучаемого результативного признака. Чем значение корреляционного отношения ближе к единице, тем теснее, ближе к функциональной зависимости связь между признаками. Для качественной оценки тесноты связи на основе показателя эмпирического корреляционного отношения можно воспользоваться соотношениями Чэддока: η, 0,1-0,3 0,3-0,5 0,5-0,7 0,7-0,9 0,9-0,99 Сила связи Слабая Умеренная Заметная Тесная Весьма тесная Решение т иповых задач к теме 1.6.: Показатели вариации. Задача № 1. По данным об урожайности винограда на различных участках определите: а) размах вариации; б) среднюю урожайность винограда; в) среднее линейное отклонение; г) дисперсию; д) среднее квадратическое отклонение; е)линейный коэффициент вариации.
Решение: а) размах вариации Р=Xmax-Xmin Р=10кг-Зкг=7 кг. б) средняя урожайность в) среднее линейное отклонение г) дисперсия д) среднее квадратическое отклонение е)линейный коэффициент вариации Задача № 2. На основании нижеследующих данных определите: а) средний размер основных промышленно-производственных фондов на один завод (упрощенным способом); б) дисперсию (упрощенным способом); в) среднее квадратическое отклонение; г) коэффициент вариации.
Решение: Т.к. интервал группировки равный, для расчета используем упрощенный метод моментов (и для средней, и для дисперсии). а) средний размер основных фондов где m1 момент первой степени тогда, =0,5·2+9=9,7(млн.руб.) б) дисперсия тогда в) среднее квадратическое отклонение (млн. руб.). г) коэффициент вариации Задача № 3. По нижеследующим данным определите: а) среднюю урожайность озимой пшеницы; б) дисперсию (упрощенным способом); в) среднее квадратическое отклонение; г) коэффициент вариации.
Решение: а) средняя урожайность б)дисперсия упрощенным способом в)среднее квадратическое отклонение г)коэффициент вариации Задача № 4. По нижеследующим данным о группировке магазинов по размеру товарооборота определите: а) среднюю величину товарооборота на один магазин по каждому району и в целом по всей совокупности магазинов; б) дисперсию признака по каждому району и в целом по всей совокупности магазинов; в) среднюю из групповых дисперсий; г) межгрупповую дисперсию; д) результаты проверьте правилом сложения дисперсий; е)для характеристики влияния на вариацию территориального признака рассчитайте эмпирический коэффициент детерминации и корреляционное отношение.
Решение:
Где — (по методу моментов) тыс. руб. средний товарооборот одного магазина в районе А; тыс. руб. средний товарооборот одного магазина в районе Б; тыс. руб. средний товарооборот одного магазина по всей совокупности магазинов; б) дисперсия по району А; дисперсия по району Б; дисперсия общая; в) средняя из внутригрупповых дисперсий г) межгрупповая дисперсия =1293 д) правило сложения дисперсий е)эмпирический коэффициент детерминации Следовательно, на группировочный территориальный признак(деление на районы) приходится лишь 2,7% вариации и слабо связан с товарооборотом магазинов., т.к. корреляционное отношение равно
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 607; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.142.249.105 (0.008 с.) |