Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема 1.7. Методы изучения взаимосвязи социально-экономических явлений.

Поиск

Сущность статистической связи социально- экономических явлений

Наука исходит из объективной закономерной взаимосвязи и причиной обусловленности всех явлений.

Изучение статистических закономерностей — важнейшая познавательная задача статистики, которую она решает с помощью особых методов, видоизменяющихся в зависимости от характера исходной информации и целей познания. Знание характера и силы связей позволяет управлять социально-экономическими процессами и предсказывать их развитие. Особую актуальность это приобретает в условиях развивающейся рыночной экономики. Изучение механизма рыночных связей, взаимодействия спроса и предложения, влияния объема и структуры товарооборота на объем и состав производства продукции, формирования товарных запасов, издержек производства, прибыли и других качественных показателей имеет первостепенное значение для прогнозирования конъюнктуры рынка, региональной организации производственных и торговых процессов, успешного ведения бизнеса.

Среди многих форм связей важнейшей является причинная, определяющая все другие формы. Сущность причинности состоит в порождении одного явления другим. Вместе с тем, причина сама по себе еще не определяет следствия, она зависит также от условий, в которых протекает действие причины. Для возникновения следствия нужны все определяющие его факторы — причина и условия. Необходимая обусловленность явлений множеством факторов называется детерминизмом.

Объектами исследования при статистическом измерении связей служит, как правило, детерминированность следствия факторами (причиной и условиями). Признак, характеризующий следствие, называется результативным; признаки, характеризующие причины, — факторными. Выявление связей между признаками основывается на результатах качественного теоретического анализа. Задача статистики — количественная оценка закономерности связей, математическая определенность дозволяет использовать результаты экономических разработок для практических целей. Вместе с тем, качественный анализ должен не только предшествовать статистическому, но и являться подтверждением справедливости его результатов.

Формы и виды связей

Связи между явлениями и их признаками классифицируют по степени тесноты связи, направлению и аналитическому выражению.

Между различными явлениями и их признаками необходимо прежде всего выделить два типа связей: функциональную (жестко детерминированную) и статистическу ю (стохастически детерминированную).

В соответствии с жестко детерминистическим представлением о функционировании экономических систем необходимость и закономерность однозначно проявляются в каждом отдельном явлении, т.е. любое действие вызывает строго определенный результат; случайными (непредвиденными заранее) воздействиями при этом пренебрегают. Поэтому при заданных начальных условиях состояние такой системы может быть определено с вероятностью, равной единице. Разновидностью такой закономерности является функциональная связь.

Связь признака у с признаком х называется функциональной, если каждому возможному значению независимого признака х соответствует одно или несколько строго определенных значений зависимого признака у Определение функциональной связи может быть легко обобщено для случая многих признаков

Характерной особенностью функциональных связей является то, что в каждом отдельном случае известен полный перечень факторов, определяющие значение зависимого (результативного) признака, а также точный механизм их влияния, выраженный определенным уравнением.

Функциональную связь можно представить уравнением:

(1.7.1.)

где y1 — результативный признак (i=1,…,n); f(xi) известная функция связи результативного и факторного признаков; хi —факторный признак.

Чаще всего функциональные связи наблюдаются в явлениях, описываемых математикой, физикой и другими точными науками. Имеют место функциональные связи и в социально-экономических процессах, но довольно редко (они отражают взаимосвязь только отдельных сторон сложных явлений общественной жизни). В экономике примером функциональной связи может служить связь между оплатой труда у и количеством изготовленных деталей х при простой сдельной оплате труда. Так, если расценка за одну деталь составляет 30 руб., то связь между признаками однозначно выразится простым линейным уравнением у=30х. Для каждого допустимого значения д: можно указать вполне определенное значение.у. Если, положим, х=5, то соответственно у=150.

В реальной общественной жизни, ввиду неполноты информации жестко детерминированной системы, может возникнуть неопределенность, из-за которой эта система по своей природе должна рассматриваться как вероятностная, при этом связь между признаками становится стохастической.

Стохастическая связь — это связь между величинами, при которой одна из них, случайная величина у, реагирует на изменение другой величины х или других величин x1, х2,...,xn (случайных или неслучайных) изменением закона распределения. Это обусловливается тем, что зависимая переменная (результативный признак), кроме рассматриваемых независимых, подвержена влиянию ряда неучтенных или неконтролируемых (случайных) факторов, а также некоторых неизбежных ошибок измерения переменных. Поскольку значения зависимой переменной подвержены случайному разбросу, они не могут быть предсказаны с достаточной точностью, а только указаны с определенной вероятностью.

Характерной особенностью стохастических связей является то, что они проявляются во всей совокупности, а не в каждой ее единице. Причем не известен ни полный перечень факторов, определяющих значение результативного признака, ни точный механизм их функционирования и взаимодействия с результативным признаком. Всегда имеет место влияние случайного. Появляющиеся различные значения зависимой переменной — реализации случайной величины.

Модель стохастической связи может быть представлена в общем виде уравнением

, (1.7.2.)

Где расчетное значение результативного признака; — часть

результативного признака, сформировавшаяся под воздействием
учтенных известных факторных признаков (одного или множества),
находящихся в стохастической связи с признаком; - часть

результативного признака, возникшая вследствие действия неконтролируемых или неучтенных факторов, а также измерения признаков неизбежно сопровождающегося некоторыми случайными ошибками.

Проявление стохастических связей подвержено действию закона больших чисел: лишь в достаточно большом числе единиц индивидуальные особенности сгладятся, случайности взаимопогасятся и зависимость, если она имеет существенную силу, проявится достаточно отчетливо.

В социально-экономической жизни приходится сталкиваться со многими явлениями, имеющими вероятностный характер. Например, уровень производительности труда рабочих стохастически связан с целым комплексом факторов: квалификацией, стажем работы, уровнем механизации и автоматизации производства, интенсивностью труда, простоями, состоянием здоровья работника, его настроением, атмосферным давлением и др. Полный перечень факторов неизвестен. Кроме того, неодинаково действие любого известного фактора на уровень производительности труда каждого рабочего. Изменение атмосферного давления, к примеру, значительно снижает работоспособность рабочих, страдающих заболеваниями сердечнососудистой системы, и практически не сказывается на производительности труда здоровых. В результате — при одинаковых возможностях наблюдается распределение значений дневной выработки рабочих.

Такое распределение носит условный характер, поскольку оно связано с фиксированными значениями факторных признаков. Различия условных распределений, имеют выраженную направленность связи (например, выработка растет с повышением квалификации рабочего). Эту направленность связи можно раскрыть более наглядно, если ограничиться рассмотрением только одного аспекта стохастической связи — изучением вместо условных распределений лишь одного их параметра — условного математического ожидания (частные случаи стохастической связи — корреляционная и регрессионная).

Корреляционная связь существует там, где взаимосвязанные явления характеризуются только случайными величинами. При такой связи среднее значение (математическое ожидание) случайной величины результативного признака у закономерно изменяется в зависимости от изменения другой величины jc или других случайных величин x1, х2,...,xn. Корреляционная связь проявляется не в каждом отдельном случае, а во всей совокупности в целом. Только при достаточно большом количестве случаев каждому значению случайного признака х будет соответствовать распределение средних значений случайного признака у. Наличие корреляционных связей присуще многим общественным явлениям.

Известно, что увеличение количества внесенных удобрений ведет к повышению урожайности. Это справедливое положение, подтверждаемое в массе явлений, совсем не означает, что на отдельных одинаково удобренных участках будет одинаковая урожайность одной и той же сельскохозяйственной культуры. Вероятнее всего, уровни урожайности будут различаться. Кроме того, существует вероятность, что более высокая урожайность может наблюдаться на менее удобренных участках: на урожайность влияет не только количество внесенных в почву удобрений, но и другие, неучтенные факторы (качество семян, предшествующие культуры, рельеф местности, агротехника земледелия, сроки я качество посева и уборки). Но если в анализ включить достаточно большое число площадей, то обнаружится прямая корреляционная зависимость между количеством внесенных удобрений (в допустимых пределах) и средним уровнем урожайности. Значит, важная особенность корреляционных связей (как и других стохастических) состоит в том, что они обнаруживаются не в единичных случаях, а в массовых явлениях и требуют для своего исследования массовых наблюдений, т. е. статистических данных.

Корреляционная связь — понятие более узкое, чем стохастическая связь. Последняя может отражаться не только в изменении средней величины, но и в вариации одного признака в зависимости от другого, т.е. любой другой характеристики вариации. Таким образом, корреляционная связь, является частным случаем стохастической связи.

В зависимости от направления действия функциональные и стохастические связи могут быть прямыми и обратными. При прямой связи направление изменения результативного признака совпадает с направлением изменения признака-фактора, т.е. с увеличением факторного признака увеличивается и результативный, и наоборот, с уменьшением факторного признака уменьшается и результативный признак. В противном случае между рассматриваемыми величинами существуют обратные связи. Например, чем выше квалификация рабочего (разряд), тем выше уровень производительности труда— прямая связь. А чем выше производительность труда, тем ниже "себестоимость единицы продукции — обратная связь.

По аналитическому выражению (форме) связи могут быть прямолинейными и криволинейными. При прямолинейной связи с возрастанием значения факторного признака происходит непрерывное возрастание (или убывание) значений результативного признака. Математически такая связь представляется уравнением прямой, а графически — прямой линией. Отсюда ее более короткое название — линейная связь.

При криволинейных связях с возрастанием значения факторного признака возрастание (или убывание) результативного признака происходит неравномерно или же направление его изменения меняется на обратное. Геометрически такие связи представляются кривыми линиями (гиперболой, параболой и т. д.).

По количеству факторов, действующих на результативный признак, связи различаются однофакторные (один фактор) и многофакторны е (два и более факторов). Однофахторные (простые) связи обычно называются парными (так как рассматривается пара признаков). Например, корреляционная связь между прибылью и производительностью труда. В случае многофакторной (множественной) связи имеют в виду, что все факторы действуют комплексно, т. е. одновременно и во взаимосвязи. Например, корреляционная связь между производительностью труда и уровнем организации труда, автоматизации производства, квалификации рабочих, производственным стажем, простоями и другими факторными признаками.

С помощью множественной корреляции можно схватить весь комплекс факторных признаков и объективно отразить существующие множественные связи.любой другой характеристики вариации. Таким образом, корреляционная связь, является частным случаем стохастической связи.

 



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 694; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.4.52 (0.01 с.)