Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Решение типовых задач к теме 1.7.: Методы изучения взаимосвязи социально-экономических явлений.

Поиск

Задача №1.

Экспертами оценивались вкусовые качества вин.

Суммарные оценки получены следующие.

Марка вина Оценка в баллах Цена в условных единицах:
    1,57
    1,60
    2.00
    2,10
    1,70
    1,85
    1,80
    1,15
    2,30
    2,40

 

Согласуется ли оценка вина с его ценой? Проверим эту гипотезу методом ранговой корреляции Спирмена и коэффициентом Фехнера.

Решение:

Оценку тесноты связи с помощью коэффициента Спирмена и Фехнера рассчитываем в табличной форме

Марка вина Цена (x) Оценка (y) Квадрат разности рангов d2=(Rx-Ry)2 Знак отклонения от средней арифметической
Усл. ед Ранг Rx Баллы Ранг Ry x- y-
1 2 3 4 5 6 7 8
1 1,57 2 11 2 0 - -
2 1,60 3 14 5 4 - -
3 2,00 7 17 7 0 + +
  2,10 8 16 6 4 + +-
  1,70 4 12 3 1 - -
  1,85 6 13 4 9 + -
  1,80 5 18 8 9 - +
  1,15 1 10 1 0 - -
  2,30 9 19 9 0 + +
  2,40 10 25 10 0 + +
Итого 18,17 x 155 x 27 x X

 

Коэффициент Спирмена

Следовательно, связь прямая и тесная.

Для определения коэффициента Фехнера рассчитаем среднее значение цены

и среднее значение оценки

Тогда количество совпадений знаков отклонений

x- и y- будет равно 8, а несовпадений 2, Отсюда Коэффициент Фехнера

 

Следовательно, связь прямая и существенная.

Задача №2.

На основании следующих условных данных необходимо исследовать связь между успеваемостью студентов - заочников одного из вузов и их работой по специальности с помощью коэффициентов ассоциации и контингенции.

 

Студенты-заочники число в том числе
студентов получивших положительные оценки получивших неудовлетворительные оценки
Работающие по специальности а+с а 20 с
Работающие не по специальности 200 b+d 140 b d
Итого a+c+b+d 320 a+b c+d

Решение:

Коэффициент ассоциации

Связь подтверждается т.к. Кa≥0,5 Коэффициент контингенции

Связь подтверждается т.к. Кk=0,3

Задача № 3.

С помощью коэффициентов взаимной сопряженности Пирсона и Чупрова необходимо исследовать связь между себестоимостью продукции производительностью труда на основании нижеследующих данных:

Себестоимость Производительность труда Итого
Высокая Средняя Низкая
Низкая        
Средняя        
Высокая          
Итого        

 

Решение:

Коэффициент Пирсона:

А

Следовательно, связь средняя. Коэффициент Чупрова

Следовательно связь средняя.

Задача № 4.

По результатам экспертной оценки степени влияния факторов на уровень производительности труда факторам были присвоены следующие ранги

Фактор                              
Ранг экспертов (x)                              
Ранг после расчета коэффициента корреляции(y)                              

Определить с помощью коэффициента корреляции рангов Кендалла насколько точно результаты экспертной оценки предугадали действительную степень влияния факторов на уровень производительности труда.

Решение:

Коэффициент корреляции рангов Кэндапла:

т.к. S=P+Q определяем Р=81 это количество чисел, находящихся после каждого ю элементов последовательности рангов переменной у, имеющих величину ранга, превышающую ранг рассматриваемого элемента т.е.числу у=3 соответствует 12 чисел (7,6,8,4,5,13,14,9,12,11,15,10), второму значению у=2 соответствует тоже12 чисел (7,6,8,4,5,13,14,9,12,11,15,10), третьему значению у=7 соответствует 8 чисел (8,13,14,9,12,11,15,10)и так далее. Отсюда P=12+12+8+8+10+7+8+7+2+1+4+1+1=81.

Далее определяем Q =24,т.е. количество чисел после каждого из членов последовательности рангов переменной у, имеющих ранг меньше, чем у рассматриваемого. Эти числа берутся со знаком минус. Так у=3 соответствует 2 числа (-2,-1), для у=2 соответствует 1 число (-1), для у=7 соответствует 4 числа (-6,-1,-4,-5) и так далее. Отсюда Q=2-1 -4-3-0-2-0-0-4-4-0-2-1-1=-24 Следовательно степень влияния отобранных факторов на производительность труда экспертами была существенной.

Задача №5.

По данным о стоимости основных производственных фондов и объеме товарной продукции определите уравнение связи и тесноту связи:

Стоимость основных производственных фондов, млн.руб.(х) Объем товарной продукции, млн. руб. (y)   ху X2 y2 ¯yx
А Б        
          19.4
          25,0
          30,6
          36,2
          41,8
          47,4
          53.0
          58,6
          64,2
          69,8
          446.0

Связь предполагается линейная, уравнение прямой ¯yx=a0+a1x

Решаем систему уравнений методом наименьших квадратов либо по формулам (1.7.6) и (1.7.7):


a0=13,8 ¯yx=13,8+5,6x

a1=5,6

Коэффициент регрессии а1 свидетельствует о том, что при увеличении объема основных фондов на 1млн. руб.количество товарной продукции увеличится на 5,6 млн.руб. Тесноту связи определяем по линейному коэффициенту корреляции

Следовательно, связь прямая и очень тесная.

Задача № 6.

№№ колхоза Внесено удобрений на 1 га. ц(х) Уро­жай­ность ц\га (У) x2 X3 X4 х х2у x
  0,4   0,16 0,064 0,0256 5,8 2,24 14,98
  0,5   0,25 0,125 0,0625 8,0 4,00 17,11
  0,5   0,25 0,125 0,0625 9,5 4,75 17,11
- - - - - - - - -
  1,4   1,96 2,744 3,8416 44,8 62,72 30,02
  1,5   2,25 3,375 5,0625 45,0 67,50 30,77
итого 30.0   32,90 38,484 47,0762 791,1 899,95 750,0

Произведем выравнивание по параболе второго порядка:

Решаем систему нормальных уравнений:

30a+32,90a1+38,484a2=781,1

32,90a0+38,484a1+47,0762a2=899,95

Решение этой системы уравнений методом наименьших квадратов или по формулам (1.7.6) и (1.7.7) дает следующие значения параметров:

a0=5,086 a1=27,511 a2=-6,927 =5,086+27,511x-6,927x2

 

Задача № 7.

Для изучения тесноты связи между выпуском продукции на 1 завод и оснащенностью заводов основными фондами определите по следующим данным эмпирическое корреляционное отношение:

 

№№ п\п Стоимость основных фондов, млн.руб(х). млн Товарная продукция, млн.руб (У). У2
       
       
       
       
       
       
Итого      

 

Результат группировки данных по стоимости основных фондов представлен в нижеследующей таблице

 

Группы заводов по стоимости основных фондов,млн.руб. Число заводов Товарная_продукция, млн._руб..
Всего В среднем на 1 завод
7-37      
37-67      
67-97      
97-127      
         

В данной задаче факторный признак оснащенность основными фондами (х), А результативный - выпуск продукции на 1 завод (у).

Решение:

Корреляционное отношение определяется по формуле

где общая дисперсия признака y, , а межгрупповая дисперсия
, вычисляем по данным группировки в вышеизложенной таблице, - это выпуск товарной продукции в среднем на1 завод в каждой группе, т.е.

,
,
,

Общая средняя признака у, =2017/30=66 fi -число предприятий в каждой группе,

заводам.

Составим расчетную таблицу:

fi      
    -53    
    -14    
    +15    
    +75    
Итого   X X  

 

Определяем межгрупповую дисперсию

Общая дисперсия определяется по исходным данным:

где

Теперь можно вычислить корреляционное отношение:

Это означает, что связь между стоимостью основных фондов и выпуском продукции тесная.



Поделиться:


Последнее изменение этой страницы: 2016-04-20; просмотров: 366; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.28.160 (0.009 с.)