Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Газообмен между альвеолами и кровью организмаСодержание книги
Поиск на нашем сайте
Газообмен осуществляется с помощью диффузии: С02 выделяется из крови в альвеолы, 02 поступает из альвеол в венозную кровь, пришедшую в легочные капилляры из всех органов и тканей организма. При этом венозная кровь, богатая С02 и бедная 02, превращается в артериальную, насыщенную 02 и обедненную С02. Газообмен между альвеолами и кровью идет непрерывно, но во время систолы больше, чем во время диастолы. А. Движущая сила, обеспечивающая газообмен в альвеолах, -это разность парциальных давлений Ро2 и Рсо2 в альвеолярной смеси газов и напряжений этих газов в крови. Парциальное давление газа (рагИаНз - частичный) - это часть общего давления газовой смеси, приходящаяся на долю данного газа. Напряжение газа в жидкости зависит только от парциального давления газа над жидкостью, и они равны между собой. Ро2 и Рсо, в альвеолах и капиллярах уравниваются. Кроме градиента парциального давления-напряжения, обеспечивающего газообмен в легких, имеется и ряд других, вспомогательных факторов, играющих важную роль в газообмене. Б. Факторы, способствующие диффузии газов в легких. 1. Огромная поверхность контакта легочных капилляров и альвеол (60-120м2). Альвеолы представляют собой пузырьки диаметром 0,3-0,4 мм, образованные эпителиоцитами. Причем каждый капилляр контактирует с 5-7 альвеолами. 2. Большая скорость диффузии газов через тонкую легочную мембрану около 1 мкм. Выравнивание Ро2 в альвеолах и крови в легких происходит за 0,25 с; кровь находится в капиллярах легких около 0,5 с, т.е. в 2 раза больше. Скорость диффузии С02 в 23 раза больше таковой 02, т.е. имеется высокая степень надежности в процессах газообмена в организме. 3. Интенсивная вентиляция легких и кровообращение - активация вентиляции легких и кровообращения в них, естественно, способствует диффузии газов в легких. 4. Корреляция между кровотоком в данном участке легкого и его вентиляцией. Если участок легкого плохо вентилируется, то кровеносные сосуды в этой области суживаются и даже полностью закрываются. Это осуществляется с помощью механизмов местной саморегуляции - посредством реакций гладкой мускулатуры: при снижении в альвеолах Ро2 возникает вазоконстрикция. В. Изменение содержания 02 и С02 в легких. Газообмен в легком, естественно, ведет к изменению газового состава в легком по сравнению с составом атмосферного воздуха. В покое человек потребляет около 250 мл 02 и выделяет около 230 мл С02. Поэтому в альвеолярном воздухе уменьшается количество 02 и увеличивается - С02 (табл. 7.2).
Изменения содержания 02 и С02 в альвеолярной смеси газов являются следствием потребления организмом 02 и выделения С02. В выдыхаемом воздухе количество 02 несколько возрастает, а С02 -уменьшается по сравнению с альвеолярной газовой смесью вследствие того, что к ней добавляется воздух воздухоносного пути, не участвующий в газообмене и, естественно, содержащий С02 и 02 в таких же количествах, как и атмосферный воздух. Кровь, обогащенная 02 и отдавшая С02, из легких поступает в сердце и с помощью артерий и капилляров распределяется по всему организму, в различных органах и тканях отдает 02 и получает С02. ТРАНСПОРТ ГАЗОВ КРОВЬЮ Газы в крови находятся в виде физического растворения и химической связи. Количество физически растворенного в крови 02 = 0,3 об %; С02 = 4,5 об %; 1\[2 = 1 об %. Общее содержание 02 и С02 в крови во много раз больше, нежели их физически растворенных фаз (см. табл. 7.3). Сравнивая количество растворенных газов в крови с общим их содержанием, видим, что 02 и С02 в крови находятся, главным образом, в виде химических соединений, с помощью которых и переносятся. Транспорт кислорода Практически весь 02 (около 20 об%- 20 мл 02 на 100 мл крови) переносится кровью в виде химического соединения с гемоглобином. В виде физического растворения транспортируется только 0,3 об%. Однако эта фаза весьма важна, так как 02 из капилляров к тканям и 02 из альвеол в кровь и в эритроциты проходит через плазму крови в виде физически растворенного газа. А. Свойства гемоглобина и его соединения. Этот красный кровяной пигмент, содержащийся в эритроцитах как переносчик 02, обладает замечательным свойством присоединять 02, когда кровь находится в легком, и отдавать 02, когда кровь проходит по капиллярам всех органов и тканей организма. Гемоглобин является хромопротеидом, его молекулярный вес составляет 64 500, он состоит из четырех одинаковых групп - гемов. Гем представляет собой протопорфирин, в центре которого расположен ион двухвалентного железа, играющего ключевую роль в переносе 02. Кислород образует обратимую связь с гемом, причем валентность железа не изменяется. При этом восстановленный гемоглобин (НЬ) становится окисленным НЬ02, точнее, НЬ(02)4 Каждый гем присоединяет по одной молекуле'кислорода, поэтому одна молекула гемоглобина связывает четыре молекулы 02. Содержание гемоглобина в крови у мужчин 130-160 г/л, у женщин 120-140 г/л. Количество 02, которое может быть связано в 100 мл крови, у мужчин составляет около 20 мл (20 об%) - кислородная емкость крови, у женщин она на 1-2 об% меньше, так как у них меньше НЬ. После разрушения старых эритроцитов в норме и в результате патологических процессов прекращается и дыхательная функция гемоглобина, поскольку он частично «теряется» через почки, частично фагоцитируется клетками мононуклеарной фагоцитирующей системы. Гем может подвергаться не только оксигенации, но и истинному окислению. При этом железо из двухвалентного превращается в трехвалентное. Окисленный гем носит название гематина (метгема), а вся полипептидная молекула в целом - метгемоглоби-на. В крови человека в норме метгемоглобин содержится в незначительных количествах, но при отравлениях некоторыми ядами, при действии некоторых лекарств, например, кодеина, фенацетина, его содержание увеличивается. Опасность таких состояний заключается в том, что окисленный гемоглобин очень слабо диссоциирует (не отдает 02 тканям) и, естественно, не может присоединять дополнительно молекулы 02, то-есть он теряет свои свойства переносчика кислорода. Так же опасно соединение гемоглобина с угарным газом (СО) - карбоксигемоглобин, поскольку сродство гемоглобина к СО в 300 раз больше, чем к кислороду, и НЬСО диссоциирует в 10 000 раз медленнее, чем НЬ02. Даже при крайне низких парциальных давлениях угарного газа гемоглобин превращается в карбоксигемоглобин: НЬ+СО = НЬСО. В норме на долю НЬСО приходится лишь 1 % общего количества гемоглобина крови, у курильщиков - значительно больше: к вечеру оно достигает 20%. Если в воздухе содержится 0,1% СО, то около 80% гемоглобина переходит в карбоксигемоглобин и выключается из транспорта 02. Опасность образования большого количества НЬСО подстерегает пассажиров на автомобильных дорогах. Известно много случаев со смертельным исходом при включении двигателя автомобиля в гараже в холодное время года с целью обогрева. Первая помощь пострадавшему заключается в немедленном прекращении его контакта с угарным газом. Б. Образование оксигемоглобина происходит в капиллярах легких очень быстро. Время полунасыщения гемоглобина кислородом составляет всего лишь 0,01 с (длительность пребывания крови в капиллярах легких в среднем 0,5 с). Главным фактором, обеспечивающим образование оксигемоглобина, является высокое парциальное давление 02 в альвеолах (100 мм рт.ст.). Пологий характер кривой образования и диссоциации оксиге-* моглобина в верхней ее части свидетельствует о том, что в случае значительного падения Ро2 в воздухе содержание 02 в крови будет сохраняться достаточно высоким (рис. 7.6). Так, даже при падении Ро2 в артериальной крови до 60 мм рт.ст. (8,0 кПа) насыщение гемоглобина кислородом равно 90% - это весьма важный биологический факт: организм все еще будет обеспечен 02 (например, при подъеме в горы, полетах на низких высотах - до 3 км), т. е. имеется высокая надежность механизмов обеспечения организма кислородом. Процесс насыщения гемоглобина кислородом в легких отражает верхняя часть кривой от 75 % до 96-98%. В венозной крови, поступающей в капилляры легких, Ро2 равно 40 мм рт.ст. и достигает в артериальной крови 100 мм рт.ст., как Ро2 в альвеолах. Имеется ряд вспомогательных факторов, способствующих оксигенации крови: 1) отщепление от карбгемоглобина С02 и удаление его (эффект Вериго); 2) понижение температуры в легких; 3) увеличение рН крови (эффект Бора). Следует также отметить, что с возрастом связывание 02 гемоглобином ухудшается. В. Диссоциация оксигемоглобина происходит в капиллярах, когда кровь от легких приходит к тканям организма. При этом гемоглобин не только отдает 02 тканям, но и присоединяет образовавшийся в тканях С02. Главным фактором, обеспечивающим диссоциацию оксигемоглобина, является падение Ро2, который быстро потребляется тканями. Образование оксигемоглобина в легких и диссоциация его в тканях проходят в пределах одного и того же верхнего участка кривой (75-96% насыщения гемоглобина кислородом). В межклеточной жидкости Ро2 уменьшается до 5-20 мм рт.ст., а в клетках падает до 1 мм рт.ст. и меньше (когда Ро2 в клетке становится равным 0,1 мм рт.ст., клетка погибает). Поскольку возникает большой градиент Ро2 (в пришедшей артериальной крови он около 95 мм рт.ст.), диссоциация оксигемоглобина идет быстро, и 02 переходит из капилляров в ткань. Длительность полудиссоциаций равна 0,02 с (время прохождения каждого эритроцита через капилляры большого круга около 2,5 с), что достаточно для отщепления 02 (огромный запас времени). Кроме главного фактора (градиента Ро2) имеется и ряд вспомогательных факторов, способствующих диссоциации оксигемоглобина в тканях. К ним относятся: 1) накопление С02 в тканях; 2) закисление среды; 3) повышение температуры. Таким образом, усиление метаболизма любой ткани ведет к улучшению диссоциации оксигемоглобина. Кроме того, диссоциации оксигемоглобина способствует 2,3-дифосфоглицерат - промежуточный продукт, образующийся в эритроцитах при расщеп- лении глюкозы. При гипоксии его образуется больше, что улучшает диссоциацию оксигемоглобина и обеспечение тканей организма кислородом. Ускоряет диссоциацию оксигемоглобина также и АТФ, но в значительно меньшей степени, так как 2,3-дифосфоглицерата в эритроцитах содержится в 4-5 раз больше, чем АТФ. Г. Миоглобин также присоединяет 02. По последовательности аминокислот и третичной структуре молекула миоглобина очень сходна с отдельной субъединицей молекулы гемоглобина. Однако молекулы миоглобина не соединяются между собой с образованием тетрамера, что, по-видимому, объясняет функциональные особенности связывания 02. Сродство миоглобина к 02 больше, чем у гемоглобина: уже при напряжении Ро2 3-4 мм рт.ст. 50% миоглобина насыщено кислородом, а при 40 мм рт.ст. насыщение достигает 95%. Однако миоглобин труднее отдает кислород. Это своего рода запас 02, который составляет 14% от общего количества 02, содержащегося в организме. Оксимиоглобин начинает отдавать кислород только после того, как парциальное давление 02 падает ниже 15 мм рт.ст. Благодаря этому он играет в покоящейся мышце роль кислородного депо и отдает 02 только тогда, когда исчерпываются запасы оксигемоглобина, в частности, во время сокращения мышцы кровоток в капиллярах может прекращаться в результате, их сдавливания, мышцы в этот период используют запасенный во время расслабления кислород. Это особенно важно для сердечной мышцы, источником энергии которой является в основном аэробное окисление. В условиях гипоксии содержание миоглобина возрастает. Сродство миоглобина с СО меньше, чем гемоглобина. Транспорт углекислого газа Транспорт углекислого газа, как и кислорода, осуществляется кровью в виде физического растворения и химической связи. Причем С02, как и 02, переносится и плазмой, и эритроцитами (И. М. Сеченов, 1859). Однако соотношение фракций С02, переносимых плазмой и эритроцитами, существенно отличается от таковых для 02. Ниже приведены усредненные показатели содержания С02 в крови. Распределение С02 в плазме и эритроцитах. Большая часть С02 транспортируется плазмой крови, причем около 60 % всего С02 находится в виде бикарбоната натрия (МаНС03, 34 об%), т.е. в виде химической связи, 4,5 об% - в виде физически растворенного С02 и около 1,5% СО, находится в виде Н2С03. Всего в венозной крови содержится 58 об% С02. В эритроците С02 находится в форме химических соединений карбгемоглобина (ННЬС02, 5,5 об%) и бикарбоната калия (КНС03, 14 об%). Углекислый газ, образуемый в организме, выделяется в основном через легкие (около 98%,) и только 0,5% - через почки, около 2% - через кожу в виде НС03-бикарбонатов. Следует отметить, что некоторое увеличение содержания С02 в крови оказывает благоприятное влияние на организм: увеличивает кровоснабжение мозга и миокарда, стимулирует процессы биосинтеза и регенерацию поврежденных тканей. Увеличение содержания С02 в крови стимулирует также сосудодвигательный и дыхательный центры. Образование соединений углекислого газа. В результате окислительных процессов и образования С02 его напряжение в клетках и, естественно, в межклеточных пространствах значительно больше (достигает 60- 80 мм рт.ст.), чем в поступающей к тканям артериальной крови (40 мм рт.ст.). Поэтому С02, согласно градиенту напряжения, из интерстиция переходит через стенку капилляров в кровь. Небольшая его часть остается в плазме в виде физического растворения. В плазме образуется также небольшое количество Н2С03 (Н20+С02 -> Н2С03), но этот процесс идет очень медленно, так как в плазме крови нет фермента карбоангидразы, катализирующего образование Н2С03 Карбоангидраза имеется в различных клетках организма, в том числе в лейкоцитах и тромбоцитах. С02 поступает и в эти клетки, где также образуются угольная кислота и ионы НС03~. Однако роль этих клеток в транспорте С02 невелика, так как они не содержат гемоглобина, их число значительно меньше, нежели эритроцитов, их размеры очень маленькие (тромбоциты имеют диаметр 2-3 мкм, эритроциты - 8 мкм). Гемоглобин транспортирует не только 02, но и С02. При этом образуется так называемая карбаминовая связь: ННЬ + С02 = = ННЬС02 (НЬ-ЫН-СООН-карбгемоглобин, точнее - карбамино-гемоглобин). Небольшое количество С02 (1 -2 %) переносится белками плазмы крови также в виде карбаминовых соединений. Диссоциация соединений углекислого газа. В легких происходят обратные процессы - выделение из организма С02 (за сутки выделяется около 850 г С02). В первую очередь начинается выход в альвеолы физически растворенного С02 из плазмы крови, поскольку парциальное давление Рсо2 в альвеолах (40 мм рт.ст.) ниже, чем в венозной крови (46 мм рт.ст.). Это ведет к уменьшению напряжения Рсо2 в крови. Причем, присоединение кислорода к гемоглобину ведет к уменьшению сродства углекислого газа к гемоглобину и расщеплению карбгемоглобина (эффект Холдена). Общая схема процессов образования и диссоциации всех соединений кислорода
и углекислого газа, происходящих во время прохождения крови в капиллярах тканей и легких, представлена на рис. 7.7. В процессе дыхания регулируется рН внутренней среды вследствие удаления С02 из организма, так как Н2С03 диссоциирует на Н20 и С02. При этом предотвращается закисление внутренней среды организма постоянно образующейся Н2С03. РЕГУЛЯЦИЯ ДЫХАНИЯ Организм осуществляет тонкое регулирование напряжения 02 и С02 в крови - их содержание остается относительно постоянным, несмотря на колебания количества доступного кислорода и потребности в нем, которая во время интенсивной мышечной работы может увеличиваться в 20 раз. Частота и глубина дыхания регулируются дыхательным центром, нейроны которого расположены в различных отделах ЦНС; главными из них являются продолговатый мозг и мост. Дыхательный центр по соответствующим нервам ритмично посылает к диафрагме и межреберным мышцам импульсы, которые вызывают дыхательные движения. В основе своей ритм дыхания является непроизвольным, но может изменяться в неко- торых пределах высшими центрами головного мозга, что свидетельствует о возможности произвольного влияния на нижележащие отделы дыхательного центра.
|
||||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 1078; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.208.220 (0.011 с.) |