Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дослідження попиту та моделювання інтересів окремого рекреантаСодержание книги
Поиск на нашем сайте
Розглянуті вище моделі (наприклад, (12) - (16) або (8) - (11) відображають інтереси власника ТРС. Зрозуміло, що актуальною задачею є також вивчення (або моделювання) інтересів (зокрема, економічних) окремого рекреанта. Нехай, як і раніше, ТРС включає в себе пі пунктів рекреації (ТРО). Позначимо через J- множину послуг, які надає ТРС в цілому, а через - множину послуг, які надаються в ТРО i . Очевидно, JiÌJ, Будемо вважати, що деякий потенційний рекреант має намір брати участь в рекреаційному процесі даної ТРС. Вивчимо поведінку рекреанта з позицій його інтересів. Приймемо позначення: si - деяка середньочікувана вартість переміщення рекреанта від місця знаходження М до пункту рекреації i ; di'i, - середньоочікувана вартість переміщення рекреанта між рекреаційними пунктами i' та і (можна вважати, що dii=0, a di'i=dii', , i'¹і); сiji - середньоочікувана вартість послуги ji Î Ji в пункті і; Рi - середньоочікувана вартість переміщення рекреанта з пункту і в пункт М після завершення рекреаційного процесу (часто Рi та si можуть співпадати); Далі припустимо, що рекреанту потрібен набір N Ì J кількістю n послуг, які є в даній ТРС (тобто в множині J), але повного набору послуг N немає в кожному окремому ТРО з номером і(). Така ситуація є цілком реалістичною і не потребує окремих обґрунтувань. В цьому випадку рекреант вимушений користуватись деякою підмножиною пунктів рекреації, які є вданій ТРС. Якщо брата до уваги економічний критерій, то стратегічна поведінка рекреанта полягає в тому, щоб мінімізувати сумарну вартість рекреаційного процесу та вартість переміщення його з пункту М в ТРС та назад з ТРС в пункт М. Враховуючи прийняті вище позначення, цю вартість (середньоочікувану) можна виразити так: Математична модель, яка реалізує пошук оптимальної стратегії рекреанта, має вигляд: Задача (45) - (51) є задачею булевого програмування. Обмеження (46) в цій задачі стверджує, що рекреант переміщується з пункту М в один з пунктів рекреації. Аналогічно (47) - це обмеження: рекреант повертається в пункт М з одного з пунктів рекреації. Зміст обмеження (48) наступний: для рекреанта кожна послуга j Î N задовольняється тільки в одному з пунктів рекреації. Обмеження (49) (51) - це обмеження на дискретність шуканих змінних. Зауважимо також, що обмеження (46) - (48) можна замінити на обмеження - рівності. Інколи с зміст розглянути інші аналоги моделі (45) - (51). Актуальним для окремого рекреанта є також раціональний (оптимальний) розподіл фінансових ресурсів (наприклад, грошей) на послуги, які можуть надаватись рекреанту в даному пункті рекреації (тобто ТРО). Нехай s - максимальний обсяг фінансових ресурсів, які рекреант може виділити на задоволення послуг рекреаційного процесу; n - кількість послуг в даному рекреаційному пункті; ci - вартість однієї послуги i-го виду (); хi - шукане число послуг i-го виду, якими користується рекреант; ki - корисність однієї тої послуги (це може бути деякий ваговий коефіцієнт, яким оцінюється значущість і-тої послуги або в більш загальному випадку означення деякої функції корисності рекреанта). Тоді розумна поведінка рекреанта полягатиме в тому, щоб при заданих фінансових обмеженнях максимізувати сумарну корисність свого рекреаційного процесу. Модель такої поведінки має вигляд: Інколи обмеження на цілочисельність можна зняти (або частково зняти, коли допустима цілочисельність тільки окремих змінних). Величини ki можна також замінити їх математичними сподіваннями і розглядати стохастичний аналог моделі (52) - (55). Зауважимо, що можна побудувати багато інших моделей, які описують оптимальну поведінку окремого рекреанта, однак зупинятись на цьому в рамках даної праці ми не будемо.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 107; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.134.106 (0.007 с.) |