ТОП 10:

ОЦЕНКА ДОСТОВЕРНОСТИ СДВИГА В ЗНАЧЕНИЯХ



ИССЛЕДУЕМОГО ПРИЗНАКА

Критерии, представленные в данном разделе предназначены для работы с зависимыми выборками.

Выборки называются зависимыми (связными), если процедура эксперимента и полученные результаты измерения некоторого свойства, проведенного на одной выборке, оказывают влияние на другую.

Примером зависимых выборок является группа, на которой дважды проводилось психологическое обследование (или группа в условиях «до» и «после» воздействия).

Типичные сдвиги-сдвиги, которые нам кажутся преобладающими.

Нетипичные сдвиги – сдвиги более редкого, противоположного направления.

 

G – критерий знаков

Критерий часто применяется для решения задачи выявления изменения признака. Применяется, если в исследовании два замера (чаще условие «до»-«после»).

Составляются ненаправленные гипотезы.

Алгоритм. Определить для каждой пары значений направление сдвига d=хпоследо. Подсчитать количество «положительных» (G+) и «отрицательных» (G-) сдвигов. Считать меньшее из двух вычисленных значений нетипичным, Gнетип.. Считать Gэмп= Gнетип. Сопоставить Gэмп с Gкр(n). Где n – общее количество сдвигов. При наличии нулевых сдвигов, общее количество сдвигов (n) меньше объема выборки.

 

Т – критерий Вилкоксона

Критерий применяется для решения задачи выявления изменения признака количественно измеренного. Применяется, если в исследовании два замера (чаще условие «до»-«после»). Данный критерий более мощный, чем критерий знаков, так как учитывает не только направление сдвига, но и его выраженность.

Для данного критерия составляются направленные гипотезы.

Эмпирическое значение критерия вычисляется по формуле:

 

где R-ранги, нетипичного направления сдвига

 

Алгоритм. Определить для каждой пары значений направление и значение сдвига d=xпоследо. Ранжируется ряд, полученный из абсолютных значений сдвигов, т.е. знак сдвига не учитывается. Нулевой сдвиг не ранжируется.

Подсчитать суммы рангов: T+ = и T- =

где R+ – ранговые значения сдвигов с положительным знаком.

R- – ранговые значения сдвигов с отрицательным знаком.

 

Эмпирическое значение критерия (Tэмп) соответствует значению меньшему из двух ранговых сумм. Сопоставить Tэмп с Tкр(n). Где n – общее количество сдвигов. При наличии нулевых сдвигов, общее количество сдвигов (n) меньше объема выборки.

 

Критерий Фридмана

Критерий можно рассматривать как распространение критерия Вилкоксона на три и большее количество значений признака связной выборки испытуемых. Критерий не позволяет выявить направление изменений, позволяет лишь установить достоверность различий признака в разных условиях.

Составляются ненаправленные гипотезы.

Эмпирическое значение критерия рассчитывается по формуле:

=

При этом,

где с – количество условий;

n – объем выборки;

Tj – сумма рангов по j-му условию.

 

Ранжирование осуществляется по строкам, т.е. ранжируются индивидуальные значения испытуемого, полученные в разных условиях.

При общем количестве измерений с=3 и числе испытуемых от 2 до 9 критические значения определяются по таблице Приложения для критерия Фридмана. При общем количестве измерений с=4 и числе испытуемых от 2 до 4 критические значения определяются по таблице Приложения для критерия Фридмана.

При большем количестве измерений и/или испытуемых критические значения определяются по таблице для критерия χ2-Пирсона. Число степеней свободы определяется по формуле ν=с-1.

 

L – критерий Пейджа

Критерий применяется для сопоставления показателей измеренных в трех и более условиях на одной и той же выборке испытуемых.

Критерий позволяет выявить тенденции в изменении величин признака при переходе от условия к условию. Он не только констатирует различия, но и указывает на направление изменений.

Применим когда n≤12 (объем выборки) и количество замеров с≤6.

Составляются направленные гипотезы.

 

Ранжирование осуществляется по строкам, т.е. ранжируются индивидуальные значения участника исследования, полученные в разных условиях (по строке).

 

Эмпирическое значение критерия рассчитывается по формуле:

 

Lэмп = ,

 

где, Тj – сумма рангов по данному условию.

j – порядковый номер, приписанный данному условию в упорядоченной последовательности условий.

 

Выборки (условия) должны быть упорядочены в соответствии с суммой рангов по выборке. Выборке с меньшей ранговой суммой присваивается значение j=1.

 

 

Тест МакНемара

(данные представлены в дихотомической шкале)

 

Значения A и D определяются из таблицы сопряженности

 

    после
- +
до   + А В
- С D

 

где A – количество человек имеющих: до «+» и « - » после;

B – количество человек имеющих: до «+» и «+» после;

C - количество человек имеющих: до «-» и « - » после;

D - количество человек имеющих: до «-» и «+» после;

 

По категории «до» - плюс обозначает проявление изучаемого показателя, или его высокое значение; минус – отсутствие проявления изучаемого показателя или его низкое значение. По категории «после» - «плюс» обозначает увеличение изучаемого показателя, «минус» – отсутствие изменения или уменьшение изучаемого показателя.

Примеры решения задач

Задача.Исследование социального интеллекта студентов специальности информатика проводилось по тесту Гилфорда-Салливена. Достоверно ли изменение социального интеллекта у студентов четвертого курса вследствие проведения тренинга коммуникативной компетентности? В таблице приведены результаты измерения.

 

№ п/п Значение социального интеллекта до тренинга Значение социального интеллекта после тренинга Сдвиг
+2
+6
+3
-3
+1
+4
-2
+3
+4
+1
+5
-1
+6

 

 

Вариант 1.Для решения выбираем критерий знаков.

 

Гипотезы:

Н0: Тренинг коммуникативной компетентности не повлиял на значение социального интеллекта студентов

Н1: Тренинг коммуникативной компетентности повлиял на значение социального интеллекта студентов

 

Для каждой пары значений определить направление сдвига d = хпосле - хдо. Значение записать в таблицу.

Подсчитать количество положительных и отрицательных сдвигов. Количество «положительных» сдвигов десять, G+=10; количество «отрицательных» сдвигов три, G-=3.

Меньшее из двух значений считается нетипичным сдвигом (Gнетип.), поэтому Gнетип.=3.

Считать Gэмп= Gнетип=3.

Для принятия решения - выбора гипотезы - необходимо сопоставить Gэмп с Gкр(n), где n – общее количество сдвигов.

Общее количество сдвигов n=13, так как положительных сдвигов десять, отрицательных сдвигов три, нулевые сдвиги не учитываются.

По таблице определяем критические значения критерия при данном количестве сдвигов.

Для уровня статистической значимости р=0,05 критическое значение критерия G0,05=3, для уровня статистической значимости р=0,01 критическое значение критерия G0,01=1.

Результаты вычисления представим наглядно.

 

 

 

 

Статистический вывод: так как рэмп=0,05, нулевая гипотеза Н0 отклоняется и принимается альтернативная гипотеза на уровне статистической значимости р=0,05.

Психологический вывод: тренинг коммуникативной компетентности повлиял на социальный интеллект студентов (р=0,05).

 

Вариант 2. Для решения выбираем T-критерий Вилкоксона.

Гипотезы:

Н0: Показатель социального интеллекта после тренинга коммуникативной компетентности не выше, чем до тренинга

Н1: Показатель социального интеллекта после тренинга коммуникативной компетентности выше, чем до тренинга

 

Для каждой пары значений определить направление и значение сдвига d=xпоследо. Результат вычисления записывается в таблицу.

В соседний столбик записываются абсолютные значения сдвигов, то есть, знак не учитывается.

Полученный ряд ранжируется, при этом нулевой сдвиг не ранжируется.

Ранг числа записывается в следующий столбик

 

№ п/п Значение социального интеллекта до тренинга Значение социального интеллекта после тренинга Сдвиг, d Абсолютные величины сдвига Ранги абсолютных величин разностей
+2 4,5
+6 12,5
+3
-3
+1
-
+4 9,5
-2 4,5
+3
+4 9,5
+1
+5
-1
-
+6 12,5
сумма        

 

Проверим правильность ранжирования.

Сложим все ранги и подсчитаем сумму рангов: 4,5+12,5+7+7+2+9,5+4,5+7+9,5+2+11+2+12,5=91.

 

Подсчитаем сумму рангов по формуле:

 

 

Обе величины совпали, 91=91, следовательно, ранжирование проведено правильно.

Ориентируясь на знак сдвига, подсчитать суммы рангов соответствующие положительному направлению сдвигов T+ = и отрицательному направлению сдвигов T- = .

Где R+ – ранговые значения сдвигов с положительным знаком;

R- – ранговые значения сдвигов с отрицательным знаком.

 

T+ = =4,5+12+7+2+9,5+7+9,5+2+12+4,5=77,5

T- = =7+4,5+2=13,5

Эмпирическое значение критерия (Tэмп) соответствует меньшей из двух ранговых сумм, следовательно Tэмп=13,5.

Общее количество сдвигов n=13, так как десять положительных сдвигов и три отрицательных сдвига.

По таблице определяем критические значения критерия при данном количестве сдвигов. Для уровня статистической значимости р=0,05 критическое значение критерия Т0,05=21, для уровня статистической значимости р=0,01 критическое значение критерия Т0,01=12.

Результаты вычисления представим наглядно.

 

 

 

Статистический вывод: так как рэмп<0,05, нулевая гипотеза Н0 отклоняется и принимается альтернативная гипотеза на уровне статистической значимости р<0,05.

Психологический вывод: тренинг коммуникативной компетентности способствовал развитию социального интеллекта студентов (р<0,05).

 

Задания для самостоятельной работы

№ 5.1. На случайной выборке из 10 карликов проверялось действие некоторого стимулятора роста. Проверить гипотезу о том, что стимулятор существенно не меняет рост карликов из изучаемой совокупности.

 

Код карлика До (см) После (см)

№ 5.2. Ученики седьмого класса отмечали свое самочувствие (тест САН) до и после урока физкультуры. Достоверно ли изменение общего самочувствия школьников?

 

Код школьника До После

№ 5.3. В курсовом исследовании Л.Н.Кузьмина изучала влияние совместной творческой деятельности на развитие взаимоотношений в подростковом коллективе. В качестве показателей рассматривались уровень развития эмпатийных тенденций, измеряемый по методике И.М.Юсупова и изменение социально-психологического климата в коллективе. Результаты испытания представлены в таблице. Определите, подтвердилась ли гипотеза.

 

Код     Уровень эмпатийных тенденций Социально – психологический климат
до после до после

 

№ 5.4.Исследователя интересовала эффективность тренинга коммуникативной компетентности. Участники тренинга – студенты четвертого курса физико-математического факультета педвуза. Измерения проводились дважды - в первый день и в последний тренинга. В таблице представлены результаты самоактуализационного теста (САТ) для одной группы. Приняты следующие обозначения шкал: ориентация во времени (Tc); поддержки (I); ценностных ориентаций (SAV); гибкости поведения (Ex); сензитивности (Fr); спонтанности (S); самоуважения (Sr); самопринятия (Sa); представление о природе человека (Nc); синергии (Sy); принятии агрессии (A); контактности (C).

На какие качества тренинг оказал наибольшее воздействие? Достоверно ли наблюдаемое изменение?

 

 

Первый замер

№ п/п Tc I SAV Ex Fr S Sr Sa Nc Sy A C

Второй замер

№ п/п Tc I SAV Ex Fr S Sr Sa Nc Sy A C

№ 5.5. Эффективность программы тренинга коммуникативной компетентности оценивалась через качество решения коммуникативных педагогических задач. Результаты испытания представлены в таблице. Достоверно ли, что участники тренинга стали более эффективно решать коммуникативные педагогические задачи?

 

№ участника Итоговый балл до тренинга Итоговый балл после тренинга

№ 5.6.Можно ли говорить о достоверной тенденции в оценках?

 

Код имени испытуемого Условие 1 Условие 2 Условие 3

 

 

№ 5.7. В таблице представлены изменение самооценки своего состояния в течении учебного года. Достоверны ли различия в самооценке своего состояния?

 

Код имени испытуемого Начало учебного года Середина учебного года Завершение учебного года

 

№ 5.8. В группе из 20 человек, имеющих повышенный уровень тревожности, 6 человек сообщили, что тревожность не изменилась, 14 человек сказали, что тревожность значительно снизилась. Из 20 человек, не имеющих проблем с тревожностью, 6 человека сообщили, что их тревожность повысилась, 14 человек не заметили каких-либо изменений с тревожностью. Проверьте эффективность коррекционной программы.

 

 







Последнее изменение этой страницы: 2016-12-14; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.234.214.113 (0.036 с.)