Генератор на основе сдвига фаз с одним ОУ. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Генератор на основе сдвига фаз с одним ОУ.



Генераторы на основе сдвига фаз производят меньше искажений, чем генераторы на основе моста Вина, имея ещё и хорошую стабильность частоты. Такой генератор может быть построен с одним ОУ, как показано на рисунке 14. Три RC звена соединены последовательно, чтобы получить крутой наклон dφ/dω, необходимый для стабильной частоты колебаний, как это описано в разделе 3. Применение меньшего количества RC звеньев приводит к высокой частоте колебаний, ограниченной полосой пропускания ОУ.

Рис. 14. Генератор на основе сдвига фаз с одним ОУ.

Скачать LTspice модель.

Рис. 15. Выходной сигнал схемы с рисунка 14.

Как правило, считается, что фазосдвигающие цепи являются независимыми друг от друга, что позволяет вывести уравнение (14). Полный сдвиг фазы петли ОС составляет –180°, при этом фазовый сдвиг, вносимый каждым звеном составляет –60°. Это происходит при ω = 2πf = 1.732/RC (tan 60° = 1.732...). Величина β в этой точке будет равна (1/2)3, так что усиление, A, должно быть равно 8, что бы общее усиление было равно единице.

(14)

Частота колебаний с номиналами компонентов, показанных на рисунке 14, составляет 3,767 кГц, а расчётная частота составляет 2,76 кГц. Кроме того, коэффициент усиления, требуемый для возникновения генерации, равен 27, а расчётный равен 8. Это расхождение частично возникает из-за разброса параметров компонентов, однако главным фактором является неверное предположение, что RC звенья не нагружают друг друга. Эта схема была очень популярна, когда активные компоненты были большими и дорогими. Но теперь ОУ недороги, малы, и в одном корпусе содержится 4 ОУ, поэтому генератор на основе фазосдвигающей цепи на одном операционном усилители теряет популярность. Искажения выходного сигнала составляют 0,46%, что значительно меньше, чем в схеме генератора на основе моста Вина без стабилизации амплитуды.

Буферированный генератор на основе сдвига фаз

Буферизованный генератор на основе сдвига фаз намного лучше небуферизованной версии, но платой за это является большее число применённых компонентов. На рисунках 16 и 17 изображён буферизированный генератор на основе сдвига фаз, и соответственно выходной сигнал. Буферы предотвращают RC цепи от нагружения друг друга, поэтому параметры буферизированного генератора на основе сдвига фаз лежат гораздо ближе к расчётным значениям частоты и коэффициенту усиления. Резистор RG, устанавливающий коэффициент усиления, нагружает третье RC звено. Если буферизировать это звено с помощью четвёртого ОУ, то параметры генератора станут идеальными. Синусоидальный сигнал с низкими искажениями может быть получен любым генератором на основе сдвига фаз, но наиболее чистый синус получается на выходе последнего RC звена генератора. Это высокоомный выход, поэтому высокое входное сопротивление нагрузки обязательно для предотвращения перегрузки и как следствия, изменения частоты генерации из-за вариаций параметров нагрузки.

Частота генерации схемы составляет 2,9 кГц по сравнению с идеальной расчётной частотой 2,76 кГц, коэффициент усиления был равен 8,33, что близко к расчётному, равному 8. Искажения составляли 1,2%, что значительно больше, чем у небуферизованого фазового генератора. Эти расхождения параметров и сильные искажения возникают из-за большого номинала резистора обратной связи RF, который совместно с входной ёмкостью ОУ CIN создаёт полюс, лежащий поблизости от частоты 5 кГц. Резистор RG всё ещё нагружает последнее RC звено. Добавление буфера между последним RC звеном и выходом VOUT снизит усиление и частоту генерации до расчётных значений.

Рис. 16. Буферированный генератор на основе сдвига фаз.

Скачать LTspice модель.

Рис. 17. Выходной сигнал схемы с рисунка 17.

Генератор Буббы

Генератор Буббы, схема которого приведена на рисунке 18, является ещё одним генератором на основе сдвига фаз, но здесь используется выгода от применения счетверённого операционного усилителя, что приносит уникальные преимущества. Четыре RC звена требуют фазовый сдвиг по 45° в каждом звене, так что этот генератор имеет отличную d&phi/dt, что приводит к минимальному дрейфу частоты. Каждая из RC секций вносит фазовый сдвиг в 45°, поэтому снимая сигнал с разных звеньев можно получить низкоомный квадратурный выход. При снятии сигналов с выходов каждого из ОУ можно получить четыре синусоиды со сдвигом фаз по 45°. Уравнение (15) описывает петлю обратной связи. При ω = 1/RCs, уравнение 15 упрощается до уравнений (16) and (17).

(15)

(16)

(17)

Рис. 18. Генератор Буббы.

Скачать LTspice модель.

Рис. 19. Выходной сигнал схемы с рисунка 18.

Что бы генерация возникла усиление A должно быть равно 4. Частота колебаний испытательной схемы составляла 1.76 кГц, при этом расчётное значение составляет 1.72 кГц, и соответственно усиление было равно 4.17 при расчётном значении, равном 4. Форма выходного сигнала показана на рисунке 19. Искажение составляют 1.1% для VOUTSINE и 0.1% for VOUTCOSINE. Синусоидальный сигнал с очень низкими искажениями может быть получен из точки соединения резисторов R и RG. Когда сигнал с низким уровнем искажений необходимо снимать со всех выходов, то общее усиление должно быть распределено среди всех ОУ. На неинвертирующий вход усиливающего ОУ подано напряжение смещения 2.5 вольт, что бы установить напряжение покоя равным половине напряжения питания при использовании однополярного источника, если же используется двухполярный источник питания то неинвертирующий вход следует заземлить. Распределение усиления между всеми ОУ требует применение смещения для них, но это никак не воздействует на частоту генерации.

Квадратурный генератор

Квадратурный генератор, изображённый на рисунке 20 является другим типом генератора на основе сдвига фаз, но три RC звена настроены так, что каждое звено вносит фазовый сдвиг по 90°. Это обеспечивает на выходе как синусоидальный, так и косинусоидальный сигнал (выходы являются квадратурными, с разностью фаз по 90°), что является явным преимуществом перед другими генераторами на основе фазовых сдвигов. Идея квадратурного генератора лежит в использовании того факта, что двойное интегрирование синусоиды даёт инвертирование сигнала, то есть происходит сдвиг сигнала по фазе на 180°. Фаза второго интегратора тогда инвертируется и используется как положительная ОС, что приводит к возникновению генрации [6].

Усиление петли обратной связи рассчитывается по уравнению (18). При R1C1 = R2C2 =R3C3 уравнение (18) упрощается до (19). Когда ω = 1/RC, уравнение (18) упрощается до 1∠–180, так что генерация возникает на частоте ω = 2πf = 1/RC. У испытательной схемы колебания возникают на частоте 1.65 кГц, что немного отличается от расчётной частоты, равной 1.59 кГц, как показано на рисунке 21. Это расхождение объясняется разбросом параметров компонент. Оба выхода имеют относительно высокие искажения, которые могут быть уменьшены при использовании АРУ. Синусоидальный выход имел коэффициент искажений 0,846%, косинусоидальный - 0,46%. Регулировка усиления может увеличить амплитуду выходного сигнала. Недостатком такого генератора является уменьшенная полоса пропускания.

(18)

(19)

Рис. 20. Схема квадратурного генератора.

Скачать LTspice модель.

Рис. 21. Выходной сигнал схемы с рисунка 20.

Заключение

Генераторы на ОУ имеют ограничение по рабочей частоте, так как у них нет необходимой ширины полосы пропускания для получения малого сдвига фаз на высоких частотах. Новые операционные усилители с обратной связью по току имеют гораздо более широкую полосу пропускания, но их очень сложно использовать в схемах генераторов, так как они очень чувствительны к ёмкостям в цепи обратной связи. Операционные усилители с обратной связью по напряжению ограничены рабочим диапазоном до сотен кГц из-за низкой полосы пропускания. Пропускная способность снижается при соединении ОУ каскадно из-за умножения фазовых сдвигов.

Генератор на основе моста Вина содержит немного компонентов и имеет хорошую стабильность частоты, но базовая схема имеет высокий коэффициент выходных искажений. Применение АРУ значительно снижает искажения, особенно в нижнем диапазоне частот. Нелинейная обратная связь обеспечивает наилучшие характеристики в средней и верхней частях частотного диапазона. Генератор на основе сдвига фаз имеет высокий уровень искажений, и без буферирования звеньев требует большого коэффициента усиления, что ограничивает его частотный диапазон очень низкой частотой. Снижение цен на операционные усилители и другие компоненты уменьшило популярность таких генераторов. Квадратурный генератор требует для своей работы всего два операционных усилителя, имеет приемлемый уровень нелинейных искажений и с его выходов можно получить синусоидальный и косинусоидальный сигналы. Его недостаток - низкая амплитуда выходного сигнала, которая может быть увеличена путём применения дополнительного каскада усиления, но это приведёт к существенному уменьшению полосы пропускания.

Ссылки

  1. Graeme, Jerald, Optimizing Op Amp Performance, McGraw Hill Book Company, 1997.
  2. Gottlieb, Irving M., Practical Oscillator Handbook, Newnes, 1997.
  3. Kennedy, E. J., Operational Amplifier Circuits, Theory and Applications, Holt Rhienhart and Winston, 1988.
  4. Philbrick Researches, Inc., Applications Manual for Computing Amplifiers, Nimrod Press, Inc., 1966.
  5. Graf, Rudolf F., Oscillator Circuits, Newnes, 1997.
  6. Graeme, Jerald, Applications of Operational Amplifiers, Third Generation Techniques, McGraw Hill Book Company, 1973.
  7. Single Supply Op Amp Design Techniques, Application Note, Texas Instruments Literature Number SLOA030.

Рон Манчини, Ричард Палмер

BACK MAIN PAGE

 

 



Поделиться:


Последнее изменение этой страницы: 2016-09-19; просмотров: 1653; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.252.8 (0.01 с.)