Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Непрерывность обратной функцииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Пусть Теорема 3.11 Пусть Доказательство. Во-первых, заметим, что если Во-вторых, пусть
Таким образом, если Непрерывность сложной функции. Введём понятие сложной функции. Пусть функции Теорема. Если функция z=f(y) непрерывна в точке ○ Пусть задано произвольное число
где В силу непрерывности функции можно указать число
Из условий (2) и (2') следует, что на множестве
где
Это означает, в силу определения непрерывности, что функция 49) Непрерывность элементарных функций Целая и дробная рациональные функции. Непрерывность f(x)=const и f(x)=x непосредственно ясна. На основании теоремы о произведении непрерывных функций вытекает непрерывность любого одночленного выражения axm, по теореме о сумме непрерывных функций - непрерывность многочлена a0xn + a1xn-1 +... +an-1 + an. Непрерывность данных функций имеет место на всем интервале Показательная функция y=ax(a>1) монотонно возрастает на всем интервале Логарифмическая функция Степенная функция Тригонометрические функции Обратные тригонометрические функции 50) Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.
|
||||||||||||||
|
Последнее изменение этой страницы: 2016-09-18; просмотров: 1031; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.156 (0.007 с.) |