Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Непрерывность обратной функцииСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Пусть -- функция, непрерывная на отрезке . Предположим, что монотонна на ; пусть, для определённости, она монотонно возрастает: из следует, что . Тогда образом отрезка будет отрезок , где и (действительно, непрерывная функция принимает любое промежуточное между и значение, причём ровно один раз, что следует из монотонности). Поэтому существует обратная к функция функция, действующая из в . Очевидно, что монотонно возрастает. (Если бы функция была монотонно убывающей, то и обратная к ней функция тоже была бы монотонно убывающей.) Теорема 3.11 Пусть -- непрерывная монотонная функция, , . Тогда обратная к функция непрерывна на отрезке . Доказательство. Во-первых, заметим, что если , , то . Во-вторых, пусть ; рассмотрим функцию , которая определена при . Очевидно, что -- непрерывная на функция, поэтому она принимает наименьшее значение в некоторой точке : Таким образом, если , то , то есть если , то . Последнее утверждение можно переформулировать так: для любого числа найдётся число , такое что при выполняется неравенство . (При этом , , , .) Получили, что функция удовлетворяет определению равномерной непрерывности на отрезке ; тем самым доказано утверждение теоремы. Непрерывность сложной функции. Введём понятие сложной функции. Пусть функции и определены на множестве X и Y соответственно, причём множество значений функции содержится в области определения функции f Тогда функцию, принимающую при каждом значение , называют сложной функцией или суперпозицией (композицией) функций и f и обозначают . Теорема. Если функция z=f(y) непрерывна в точке , а функция непрерывна в точке , причём , то в некоторой окрестности точки определена сложная функция , и эта функция непрерывна в точке . ○ Пусть задано произвольное число . В силу непрерывности функции f в точке существует число такое, что и (2) где . В силу непрерывности функции в точке для найденного в (2) числа можно указать число такое, что (2') Из условий (2) и (2') следует, что на множестве определена сложная функция , причём , где , т.е. . Это означает, в силу определения непрерывности, что функция непрерывна в точке .● 49) Непрерывность элементарных функций Целая и дробная рациональные функции. Непрерывность f(x)=const и f(x)=x непосредственно ясна. На основании теоремы о произведении непрерывных функций вытекает непрерывность любого одночленного выражения axm, по теореме о сумме непрерывных функций - непрерывность многочлена a0xn + a1xn-1 +... +an-1 + an. Непрерывность данных функций имеет место на всем интервале . Частное двух многочленов непрерывно всюду, кроме точек b0xm + b1xm-1 +...+ bm-1x + bm = 0 (в этих точках - либо разрыв 2-го рода, либо устранимый разрыв). Показательная функция y=ax(a>1) монотонно возрастает на всем интервале . Ее значения заполняют весь интервал . Из существования логарифма следует непрерывность данной функции. Логарифмическая функция . Рассмотрим случай a>1. Эта функция возрастает при , и принимает любое значение из . Отсюда следует ее непрерывность. Степенная функция . При возрастании x от 0 до возрастает или убывает на интервале . Следовательно, данная функция непрерывна. Тригонометрические функции , , , , , . Остановимся на функции . Ее непрерывность на отрезке вытекает из ее монотонности, а также из факта (устанавливаемого геометрически), что при этом она принимает все значения от -1 до 1. То же относится к любому промежутку . Следовательно, функция непрерывна для всех значений x. Аналогично - для функции . По свойствам непрерывных функций вытекает непрерывность функций . Исключение для первых двух функций - значения x вида , при которых , для других двух - значения вида , при которых . Обратные тригонометрические функции , , , . Первые две непрерывны на , остальные - на 50) Если функция f (x) не является непрерывной в точке x = a, то говорят, что f (x) имеет разрыв в этой точке. На рисунке 1 схематически изображены графики четырех функций, две из которых непрерывны при x = a, а две имеют разрыв.
|
||||||||||||||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 877; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.163.167 (0.007 с.) |