Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Дифференцирование неявных и параметрически заданных функцийСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Неявно заданная функция Если функция задана уравнением у=ƒ(х), разрешенным относительно у, то функция задана в явном виде (явная функция). Под неявным заданием функции понимают задание функции в виде уравнения F(x;y)=0, не разрешенного относительно у. Всякую явно заданную функцию у=ƒ (х) можно записать как неявно заданную уравнением ƒ(х)-у=0, но не наоборот. Не всегда легко, а иногда и невозможно разрешить уравнение относительно у (например, у+2х+cosy-1=0 или 2у-х+у=0). Если неявная функция задана уравнением F(x; у)=0, то для нахождения производной от у по х нет необходимости разрешать уравнение относительно у: достаточно продифференцировать это уравнение по x, рассматривая при этом у как функцию х, и полученное затем уравнение разрешить относительно у'. Производная неявной функции выражается через аргумент х и функцию у. << Пример 21.1 Найти производную функции у, заданную уравнением х3+у3-3ху=0. Решение: Функция у задана неявно. Дифференцируем по х равенство х3+у3-3ху=0. Из полученного соотношения 3х2+3у2· у'-3(1· у+х· у')=0 следует, что у2у'-ху'=у-х2, т. е. у'=(у-х2)/(у2-х). Функция, заданная параметрически Пусть зависимость между аргументом х и функцией у задана параметрически в виде двух уравнений где t — вспомогательная переменная, называемая параметром. Найдем производную у'х, считая, что функции (21.1) имеют производные и что функция х=x(t) имеет обратную t=φ(х). По правилу дифференцирования обратной функции Функцию у=ƒ(х), определяемую параметрическими уравнениями (21.1), можно рассматривать как сложную функцию у=y(t), где t=φ(х). По правилу дифференцирования сложной функции имеем: у'х=y't•t'x. С учетом равенства (21.2) получаем Полученная формула позволяет находить производную у'х от функции заданной параметрически, не находя непосредственной зависимости у от х. << Пример 21.2 Пусть Найти у'х. Решение: Имеем x't=3t2, y't=2t. Следовательно, у'х=2t/t2, т. е. В этом можно убедиться, найдя непосредственно зависимость у от х. Действительно, Тогда Отсюда т. е. 60) Понятие дифференциала Пусть функция y = f (x) дифференцируема при некотором значении переменной x. Следовательно, в точке x существует конечная производная Тогда по определению предела функции разность (1) является бесконечно малой величиной при . Выразив из равенства (1) приращение функции, получим (2) (величина не зависит от , т. е. остаётся постоянной при ). Если , то в правой части равенства (2) первое слагаемое линейно относительно . Поэтому при оно является бесконечно малой того же порядка малости, что и . Второе слагаемое - бесконечно малая более высокого порядка малости, чем первое, так как их отношение стремится к нулю при Поэтому говорят, что первое слагаемое формулы (2) является главной, линейной относительно частью приращения функции; чем меньше , тем большую долю приращения составляет эта часть. Поэтому при малых значениях (и при ) приращение функции можно приближенно заменить его главной частью , т.е. (3) Эту главную часть приращения функции называют дифференциалом данной функции в точке x и обозначают или Следовательно, (4) или (5) Итак, дифференциал функции y = f (x) равен произведению её производной на приращение независимой переменной. Замечание. Нужно помнить, что если x – исходное значение аргумента, - наращенное значение, то производная в выражении дифференциала берётся в исходной точке x; в формуле (5) это видно из записи, в формуле (4) – нет. Дифференциал функции можно записать в другой форме: (6) или Геометрический смысл дифференциала. Дифференциал функции y = f (x) равен приращению ординаты касательной, проведённой к графику этой функции в точке (x; y), при изменении x на величину . 61) Инвариантность формы дифференциала первого порядка. Следствие 2.4.1. dz = F′(y0)dy = Φ′(x0)dx. В зтой формуле dy = f′(x)dx является дифференциалом функции, а dx дифференциалом независимой переменной. – 75 –Таким образом, дифференциал функции z имеет один и тот же вид (а именно, произведение производной функции на дифференциал переменной) независимо от того, считается ли эта переменная независимой (dz = Φ′(x0)dx) или она является функцией (dz = F′(y0)dy). В этом и заключается инвариантность формы дифференциала (первого порядка). Замечание 2.4.2. Если приходится иметь дело со сложной функцией z =z(y), y = y(x), то для обозначения ее производной употребляется также индекс x или y, указывающий, по какой переменной берется производная, т.е. пишут z′x или z′y. В этих обозначениях формула для вычисления производной сложной функции имеет вид z′x = z′yy′x. 62)
|
||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 4041; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.123.61 (0.006 с.) |