Проекция вектора на направление другого вектора 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Проекция вектора на направление другого вектора

Поиск

Для проекции вектора на направление вектора из определения скалярного произведения имеем

.

В координатной форме формула для проекции примет вид

.

21)

 

Результатом векторного произведения векторов является ВЕКТОР: , то есть умножаем векторы и получаем снова вектор. Закрытый клуб. Собственно, отсюда и название операции. В различной учебной литературе обозначения тоже могут варьироваться, я буду использовать букву .

Определение: Векторным произведением неколлинеарных векторов , взятых в данном порядке, называется ВЕКТОР , длина которого численно равна площади параллелограмма, построенного на данных векторах; вектор ортогонален векторам , и направлен так, что базис имеет правую ориентацию:

Векторное произведение коллинеарных векторов

Определение подробно разобрано, осталось выяснить, что происходит, когда векторы коллинеарны. Если векторы коллинеарны, то их можно расположить на одной прямой и наш параллелограмм тоже «складывается» в одну прямую. Площадь такого, как говорят математики, вырожденного параллелограмма равна нулю. Это же следует и из формулы – синус нуля или 180-ти градусов равен нулю, а значит, и площадь нулевая

Таким образом, если , то . Строго говоря, само векторное произведение равно нулевому вектору, но на практике этим часто пренебрегают и пишут, что оно просто равно нулю.

Частный случай – векторное произведение вектора на самого себя:

Смешанное произведение векторов – это произведение трёх векторов:

Вот так вот они выстроились паровозиком и ждут, не дождутся, когда их вычислят.

Сначала опять определение и картинка:

Определение: Смешанным произведением некомпланарных векторов , взятых в данном порядке, называется объём параллелепипеда, построенного на данных векторах, снабжённый знаком «+», если базис правый, и знаком «–», если базис левый.

Выполним рисунок. Невидимые нам линии прочерчены пунктиром:

Смешанное произведение компланарных векторов

Если векторы компланарны, то их можно расположить в одной плоскости. В результате параллелепипед «складывается» в плоскость, и объём такого вырожденного параллелепипеда равен нулю: .

Немного отвлекусь от темы, возможно, не все знают ответы на следующие вопросы:
– Чему равны длина и ширина точки?
– Чему равна площадь прямой?
– Чему равен объём плоскости?

С позиции геометрии ответ таков: нулю

Непосредственно из определения следует формула вычисления объема параллелепипеда, построенного на векторах :

3) Теперь познакомимся с геометрическим смыслом векторного произведения. Это очень важный пункт! ДЛИНА синего вектора (а, значит, и малинового вектора ) численно равна ПЛОЩАДИ параллелограмма, построенного на векторах . На рисунке данный параллелограмм заштрихован чёрным цветом.

Примечание: чертёж является схематическим, и, естественно, номинальная длина векторного произведения не равна площади параллелограмма.

Вспоминаем одну из геометрических формул: площадь параллелограмма равна произведению смежных сторон на синус угла между ними. Поэтому, исходя из вышесказанного, справедлива формула вычисления ДЛИНЫ векторного произведения:

Подчёркиваю, что в формуле речь идёт о ДЛИНЕ вектора, а не о самом векторе . Каков практический смысл? А смысл таков, что в задачах аналитической геометрии площадь параллелограмма часто находят через понятие векторного произведения:

Получим вторую важную формулу. Диагональ параллелограмма (красный пунктир) делит его на два равных треугольника. Следовательно, площадь треугольника, построенного на векторах (красная штриховка), можно найти по формуле:

 

22)

Выражение векторного произведения через проекции векторов и на координатные оси прямоугольной системы координат дается формулой

(27)

которую можно записать с помощью определителя

(28)

Проекции векторного произведения на оси прямоугольной системы координат вычисляются по формулам

(29)

23)

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

Ах + Ву + С = 0,

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим уравнением прямой. В зависимости от значений постоянных А,В и С возможны следующие частные случаи:

• C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

• А = 0, В ≠0, С ≠0 { By + C = 0}- прямая параллельна оси Ох

• В = 0, А ≠0, С ≠ 0 { Ax + C = 0} – прямая параллельна оси Оу

• В = С = 0, А ≠0 – прямая совпадает с осью Оу

• А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных начальных условий.

24)

Угол между параллельными или совпадающими прямыми считается равным нулю.
Углом между пересекающимися прямыми называется наименьший из углов, образованных при пересечении прямых.
Углом между скрещивающимися прямыми называется угол между пересекающимися прямыми, соответственно параллельными данным скрещивающимся.
Две прямые называются перпендикулярными (ортогональными), если угол между ними прямой.  
Угол между двумя прямыми находится в пределах от 0° до 90°. 0° < z. (a, b) < 90°

 

25)



Поделиться:


Последнее изменение этой страницы: 2016-09-18; просмотров: 830; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.216.156.226 (0.011 с.)