ТОП 10:

Понятие вектора. Равные и коллинеарные векторы.



Ответы на коллоквиум

Понятие вектора. Равные и коллинеарные векторы.

Вектором называется направленный отрезок. Векторы AB и CD называются одинаково направленными или сонаправленными, если лучи AB и CD одинаково направлены. Если лучи AB и CD противоположно направлены, векторы AB и CD называются противоположно направленными. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютную величину вектора обозначим | |. Два вектора называютсяравными, если они одинаково направлены и равны по абсолютной величине.

Сложение и вычитание векторов.

Суммой векторов (a1;a2) и (b1;b2) называется вектор (a1+b1;a2+b2)

 

Разностью векторов (a1;a2) и (b1;b2) называется такой вектор (c1;c2) который в сумме с вектором дает вектор , откуда c1 = a1b1; c2 = a2b2.

Суммойтрех векторов называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

 

Умножение вектора на число.

Произведением вектора (a1;a2) на число λ называется вектор (λa1;λa2).

 

Линейно зависимые и независимые системы векторов.

Скалярным произведением векторов (a1;a2 (b1;b2) называется число a1b1+a2b2

Скалярное произведение векторов и обозначается .

Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.

 

 

 

Необходимое и достаточное условие коллинеарности двух векторов.

Два вектора и называются коллинеарными, если они расположены на параллельных прямых или на одной прямой.

Нулевой вектор коллинеарен любому вектору.Два ненулевых вектора и коллинеарны, Û когда они пропорциональны т.е. = k , k – скаляр.

 

Необходимое и достаточное условие компланарности трех векторов.

Три вектора , , называются компланарными, если они параллельны некоторой плоскости или лежат в ней.

Три ненулевых вектора , , компланарны, Û когда один из них является линейной комбинацией двух других, т.е.

= k + l , k ,l– скаляры.

 

Операции над векторами, заданными своими координатами.

Проекции вектора на координатные оси Ох, Оу, Оz называются координатами вектора. Обозначение: {ax, ay, az}.

Длина вектора:

Расстояние между точками и вычисляется по формуле: .

Действия над векторами в координатной форме.

Даны векторы ={ax, ay, az} и ={bx, by, bz}.

1. ( ± )={ax ± bx, ay ± by, az ± bz}.

2. l ={lax, lay, laz}, где l – скаляр.

 

 

Скалярное произведение и его свойства.

Определение: Под скалярным произведением двух векторов и

понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и .

Свойства скалярного произведения:

1. × =

2. ( + ) =

3.

4.

5. , где – скаляры.

6. два вектора перпендикулярны (ортогональны), если .

7. тогда и только тогда, когда .

Скалярное произведение в координатной форме имеет вид: , где и .

Векторное произведение и его свойства.

Определение: Под векторным произведением двух векторов и понимается вектор, для которого:

-модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и

-этот вектор перпендикулярен перемножаемым векторам, т.е.

-если векторы неколлинеарны, то они образуют правую тройку векторов.

Свойства векторного произведения:

1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е.

2.Векторный квадрат равен нуль-вектору, т.е.

3.Скалярный множитель можно выносить за знак векторного произведения, т.е.

4.Для любых трех векторов справедливо равенство

5.Необходимое и достаточное условие коллинеарности двух векторов и :

Векторное произведение в координатной форме.

Если известны координаты векторов и , то их векторное произведение находится по формуле:

.

Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:

 

Параметрические и каноническое уравнения прямой на плоскости

Векторно-параметрическое уравнение прямой:

где - фиксированная точка, лежащая на прямой;

- направляющий вектор.

В координатах (параметрические уравнения):

Каноническое уравнениепрямой

 

Ответы на коллоквиум

Понятие вектора. Равные и коллинеарные векторы.

Вектором называется направленный отрезок. Векторы AB и CD называются одинаково направленными или сонаправленными, если лучи AB и CD одинаково направлены. Если лучи AB и CD противоположно направлены, векторы AB и CD называются противоположно направленными. Два вектора называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.Абсолютной величиной (или модулем) вектора называется длина отрезка, изображающего вектор. Абсолютную величину вектора обозначим | |. Два вектора называютсяравными, если они одинаково направлены и равны по абсолютной величине.

Сложение и вычитание векторов.

Суммой векторов (a1;a2) и (b1;b2) называется вектор (a1+b1;a2+b2)

 

Разностью векторов (a1;a2) и (b1;b2) называется такой вектор (c1;c2) который в сумме с вектором дает вектор , откуда c1 = a1b1; c2 = a2b2.

Суммойтрех векторов называется диагональ параллелепипеда, построенного на этих векторах (правило параллелепипеда).

 

Умножение вектора на число.

Произведением вектора (a1;a2) на число λ называется вектор (λa1;λa2).

 







Последнее изменение этой страницы: 2016-04-07; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.231.228.109 (0.01 с.)