Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Линейно зависимые и независимые системы векторов.Содержание книги
Поиск на нашем сайте
Скалярным произведением векторов (a1;a2)и (b1;b2) называется число a1b1+a2b2 Скалярное произведение векторов и обозначается . Скалярное произведение векторов равно произведению их абсолютных величин на косинус угла между ними.
Необходимое и достаточное условие коллинеарности двух векторов. Два вектора и называются коллинеарными, если они расположены на параллельных прямых или на одной прямой. Нулевой вектор коллинеарен любому вектору.Два ненулевых вектора и коллинеарны, Û когда они пропорциональны т.е. = k , k – скаляр.
Необходимое и достаточное условие компланарности трех векторов. Три вектора , , называются компланарными, если они параллельны некоторой плоскости или лежат в ней. Три ненулевых вектора , , компланарны, Û когда один из них является линейной комбинацией двух других, т.е. = k + l , k,l – скаляры.
Операции над векторами, заданными своими координатами. Проекции вектора на координатные оси Ох, Оу, Оz называются координатами вектора. Обозначение: { ax, ay, az }. Длина вектора: Расстояние между точками и вычисляется по формуле: . Действия над векторами в координатной форме. Даны векторы ={ax, ay, az} и ={bx, by, bz}. 1. ( ± )={ax ± bx, ay ± by, az ± bz}. 2. l ={lax, lay, laz}, где l – скаляр.
Скалярное произведение и его свойства. Определение: Под скалярным произведением двух векторов и понимается число, равное произведению длин этих векторов на косинус угла между ними, т.е. = , - угол между векторами и . Свойства скалярного произведения: 1. × = 2. ( + ) = 3. 4. 5. , где – скаляры. 6. два вектора перпендикулярны (ортогональны), если . 7. тогда и только тогда, когда . Скалярное произведение в координатной форме имеет вид: , где и . Векторное произведение и его свойства. Определение: Под векторным произведением двух векторов и понимается вектор, для которого: -модуль равен площади параллелограмма, построенного на данных векторах, т.е. , где угол между векторами и -этот вектор перпендикулярен перемножаемым векторам, т.е. -если векторы неколлинеарны, то они образуют правую тройку векторов. Свойства векторного произведения: 1.При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т.е. 2.Векторный квадрат равен нуль-вектору, т.е. 3.Скалярный множитель можно выносить за знак векторного произведения, т.е. 4.Для любых трех векторов справедливо равенство 5.Необходимое и достаточное условие коллинеарности двух векторов и : Векторное произведение в координатной форме. Если известны координаты векторов и , то их векторное произведение находится по формуле: . Тогда из определения векторного произведения следует, что площадь параллелограмма, построенного на векторах и , вычисляется по формуле:
Смешанное произведение и его свойства Определение: Смешанным (векторно-скалярным) произведением векторов называется число, определяемое по формуле: . Свойства смешанного произведения: 1. Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е. . 2. При перестановке двух соседних сомножителей смешанное произведение меняет свой знак на противоположный, т.е. . 3. Необходимое и достаточное условие компланарности трех векторов : =0. 4. Смешанное произведение трех векторов равно объему параллелепипеда, построенного на этих векторах, взятому со знаком плюс, если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку, т.е. . Если известны координаты векторов , то смешанное произведение находится по формуле:
Угол между двумя ненулевыми векторами. Условие перпендикулярности двух векторов. Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Даны два вектора (xa; ya) и (xb; yb). Эти векторы будут перпендикулярны, если выражение xaxb+ yayb = 0. Угол между двумя ненулевыми векторами определяется с помощью вычисления скалярного произведения. ab = |a|*|b|*cos α В случае трехмерного пространства
|
||||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 336; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.205.114 (0.009 с.) |