Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Производственные функции и функции полезности. Изокосты, изокванты и линии безразличия.Содержание книги
Поиск на нашем сайте
Производственные ф-и – экономико-математическое уравнение, связывающее переменные величины затрат (ресурсов) с величинами продукции (выпуска). ПФ может устанавливать зависимость объема продукции от наличия или потребления ресурсов – ф-я выпуска, наряду с которыми исп-ся как бы обратные к ним ф-и зависимости затрат рес-в от объемов выпуска продукции. Частными случаями ПФ. Явл. ф-я издержек (связь объема продукции и издержек пр-ва), ф-я капитальных затрат (завис-ть капиталовложений от производственной мощности предприятия). Наиболее важные из мат. Форм ПФ: Линейная ПФ: Р=а1х1+а2х2+…+аnxn, где а1, а2,…. - факторы пр-ва. Ф-я Кобба-Дугласа: N=A*Lα*Kβ, где N- национальный доход страны, L и K- соответственно объемы приложенного труда и капитала. Ф-я CES: P=A[(1-a)K-b +aL-b] -c/ b Ф-я полезности показывает зависимость эффекта некоторого действия от интенсивности этого дей-я. Общий вид: u=u(x1,…xn), x1,…xn- факторы, влияющие на полезность u. ФП может служить моделью поведения потребителей благ и услуг в обществе и рассматриваться как целевая ф-я потребления: v=v(с1,…сm), с1,…- количества благ. Потребители стремятся максимизировать эту ф-ю. Мат. Св-во ф-и: она должна иметь положительную первую производную, что означает: при увеличении объема благ увеличивается и полезность. Выбирая между разными наборами благ потребитель предпочтет те, чья полезность больше, поэтому ФП часто наз ф-й предпочтений. Изокосты – геометрическое место точек (в пространстве ресурсов), для которых издержки пр-ва постоянны. В случае двух видов затрат И. Представляют собой параллельные прямые с наклоном, который равен отношению цен к затратам каждого вида (взятому с отрицательным знаком), что вытекает из формулы издержек: С=р1х1+р2х2, р1,р2 – цены, х1,х2 – объемы затрат каждого вида. Х2
1 2 Х1 Изокванта – геометрическое место точек, в которых разные сочетания факторов пр-ва (ресурсов) дают одно и то же кол-во выпускаемой продукции. Кривизна И. Характеризует эластичность замещения между затратами этих факторов. Вид изокванты для двух видов взаимозаменяемых ресурсов:
Х2 q1 Х22 q2 Х21 q1
Осн. Св-ва: 1) Никогда не пересекаются друг с другом 2) Большему выпуску продукции соответствует более удаленная от начала координат изокванта 3) Если все ресурсы абсолютно необходимы для произ-ва, то И. Не имеют общих точек с осями координат, 4) При увеличении затрат одного ресурса объем произ-ва можно сохранить на том же уровне при уменьшении затрат др. рес. В случае отсутствия возможности замены рес-в И. Приобретают вид (рис. 1) при постоянном соотношении затрат и при изменяющемся соотношении затрат (рис.2) Х2 Х2
Х1 Х1 Рис.1 Рис2
Кривые безразличия – геометрическое место точек (пространства товаров), характеризующихся состоянием безразличия с точки зрения потребителя или производителя. Это графическая иллюстрация взаимозаменяемости товаров. Применяется для анализа спрса и потребления, а также др. эк. Явлений. Отложим по оси 0Х кол-во 1-го блага, ОУ-другого. Кривая безразличия соединяет все толчки, отражающие такие комбинации, что покупателю безразлично, что покупать. Если построить много кривых безразличия, то получится карта безразличия. Св-ва: 1) К.Б. имеют отрицат. Наклон, крутизна которого показывает предельную норму замещения 1-го товара дру-гим. 2) Кривые никогда не пересекаются 3) Кривые выпуклы к началу координат (их абсолютный наклон уменьшается при движении по ним вправо). У c y1 У2 А Y3 Х1 Х2 Х3 Х
Неявные функции Пусть переменная u, является функцией переменных х1, х2,…, хn, задается посредством функционального уравнения F (х1, х2,…, хn, u) = 0. В этом случае говорят, что u как функция аргументов х1, х2,…, хn задана неявно, а саму функцию u называют неявной функцией. Неявные функции могут задаваться и посредством системы функциональных уравнений. Производная функции y = y(x), заданной неявно уравнением F(x,y) = 0, где F(x, y) – диффиренцируемая функция переменных x и y, может быть вычислена по формуле: y’ = - F’x / F’y При условии, что F’y ≠ 0. Аналогично частные производные неявной функции двух переменных u = (х1, х2), заданной с помощью уравнения F(х1, х2, u) = 0, где F(х1, х2, u) – дифференцируемая функция переменных х1, х2, u могут быть вычислены по формулам: ∂u / ∂x1 = - F’x1 / F’u, ∂u / ∂x2 = - F’x2 / F’u.
|
|||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 247; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.195.164 (0.005 с.) |