Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экстремальные значения выпуклых и вогнутых функций.Содержание книги
Поиск на нашем сайте
1.Если х* - точка локального минимума (максимума) выпуклой (вогнутой) функции f (x) на выпуклом множестве Р Ì Rn то f (x*) – наименьшее (наибольшее) значение f (x) на Р. Если f (x) строго выпукла (вогнута), то х* - единственная точка глобального экстремума. 2.Пусть f (x) – выпуклая (вогнутая) функция на выпуклом множестве Р Ì Rn и пусть grad f (x*)=0. Тогда х* -точка глобального минимума (максимума) f (x) на Р. Множители Лагранжа и теорема Куна-Таккера. рассмотрим следующую задачу, называемую задачей вогнутого программирования: найти точку глобального максимума вогнутой функции f (x) на выпуклом множестве Р Ì Rn , заданном системой неравенств: ó g1(x)³0, î ………. ì g s(x)³0 ì g s(x)³0 î x³0 где g1(х),…, g s(x) – вогнутые функции. для решения вводят функцию Лагранжа F(x,l)= f (x)+l1 g1(x)+…+l s g s(x), где l=(l1,…,l s) – вектор множителей Лагранжа. Предположим, что все функции дифференциируемы и существует точка х³0, для которой все тривиальные неравенства из системы уравнений строгие. Точка х*³0 является точкой глобального максимума f (x) на Р в том случае, когда существует вектор l*=(l*1,…,l*s)³0, такой, что выполняются условия: gradxF(x*, l*)£0; (gradxF(x*, l*);х*)=0 gradlF(x*, l*)³0 (gradlF(x*, l*);l*)=0 Эти условия означают, что точка (x*, l*) является седловой точкой функции F(x, l), т.е. F(x, l*)£ F(x*, l*)£ F(x*, l)
Числове и функциональные ряды. Числовые ряды. Сходимость и сумма ряда. Необходимое условие сходимости. Действия с рядами. Числовым рядом наз-ся бесконечная последовательность чисел, соединенная знаком сложения: а1+а2+…+ак +…=∑к=1∞ак. Где а1,…,ак- члены числового ряда Введем след. Обозначения: Sк = ∑к=1каi = а1+а2+…+ак - n-ая частичная сумма числового ряда: к=1, то Sк=а1,к=2, то Sк=а1+а2,…к: Sк = а1+а2+…+ак, т.е. видно, что частичная сумма образует числ. Последовательность. Числ ряд наз сходящимся, и его сумма в этом случае будет равна S, если сущ-т конечные предел последовательности частичных сумм, котрый равен S: LimSk=S, k→∞. В противном случае числ ряд расходится. Св-ва сходящихся числ. Рядов. Рассмотрим 2 числ ряда: а1+а2+…+ак +…=∑к=1∞ак. (1)
в1+в2+…+вк +…=∑к=1∞вк (2) Опр. 1). Суммой этих рядов наз ряд. Каждый член которого равен сумме соответствующих членов рядов (1) и (2). 2) Ряд, каждый член которого равен произведению соответствующего члена ряда (1) на одно и то же действительное число, наз произведением ряда на действительное число λ. Св-ва. 1)Если ряд (2) сходится, и его сумма равна S, тогда произведение этого ряда на действительное число также сходится, и его сумма будет равна λS. Док-во: Пусть Sk- частичная сумма ряда (2), sk - частичная сумма ряда λ в1+ λ в2+…+λ вк +…, ясно, что λ Sk = sk. Переходя к пределу, получим: Lim sk=lim λSk= λlimSk= λS(k→∞) 2)Если ряды (1) и (2) сходятся, и их суммы соответственно равны S, S’, то ряд из определения 1) (назовем его (3)) также сходится, а его сумма будет равна S+S’. Док-во: Qk=Sk+Tk, где Qk, Sk,Tk – сответственно частич суммы рядо (1), (2), (3). Переходя к пределу при k→∞, получаем, что сущ-т LimQk и Q=S+T 3)Если ряд сходится, то ряд, полученный из данного путем отбрасывания или приписывания конечного числа членов также сходится. Док-во: Рассмотрим, когда отбрасывают первые n членов. Оставшийся ряд аn+1 +аn+2+… наз остатком исходного ряда (1). Пусть Сn- сумма первых n членов, Sk -частичная сумма исх. Ряда,S’k - частичная сумма остатка, при k>n: Sk = Cn+S’k Если сущ-т предел lim Sk k→∞, то сущ-т и предел lim S’k и наоборот. В частности, выполняется равенство: S=S’+Cn 4)Если ряд (1) сходится, то сходится и любой ряд. Полученный из него группировкой слагаемых, причем суммы обоих рядов одинаковы. Необходимое усл-е сходимости. Теорема. Если ряд (1) сходится, то предел его общего члена при к →∞ равен 0. lim ak=0 Док-во. 1){Sk=a1+a2+…+ak {Sk-1=a1+a2+…+ak-1, значит ак=Sk-Sk-1 2)Поскольку ряд сходится, то lim Sk = S, k→∞ 3) k→∞: lim ak= lim Sk- lim Sk-1 = S- lim Sk-1= S-S=0 ((k-1)→∞) Следствие: если lim ak≠0 или не сущ-т, то ряд расходится. Сформулированный признак явл. необходимым усл-м и не явл достаточным, чтобы ряд сходился. Ряды с неотрицательными членами. Признаки сходимости (сравнения, Даламбера, интегральный) Пусть a1 + a2 + … + an + = n=1S¥ an = Sn – числовой ряд, каждый член которого положителен. Такой ряд называется рядом с положительными членами или просто положительным числовым рядом. S1 = a1 > 0, S2 = a1 + a2> 0, {Sn}- возрастающая числовая последовательность Признаки сходимости положительных числовых рядов. Для того, чтобы положительный ряд сходился необходимо и достаточно, чтобы последовательность его частных сумм была ограничена.
Признаки сравнения Пусть заданы два положительных числовых ряда: u1 + u2 + … + un + = n=1S¥ un, un > 0 для " n v1 + v2 + … + vn + = n=1S¥ vn, vn > 0 для " n 1) Если "n Î N: un £ vn и ряд n=1S¥ vn – сходится, то и ряд n=1S¥ un – сходится. Если "n Î N: un £ vn и ряд n=1S¥ un – расходится, то и ряд n=1S¥ vn – расходится. 2) Если $ lim un/vn = k, то ряды либо одновременно сходятся, либо n ® ¥ k = const одновременно расходятся.
Признак сходимости Даламбера. Если n=1S¥ un – положительный ряд, для которого lim un+1/un = L, то n ® ¥ 1) при L < 1 ряд сходится 2) при L > 1 ряд расходится 3) при L = 1 необходимы дополнительные исследования.
Интегральный признак сходимости. Теорема. Пусть n=1S¥un - положительный ряд, для которого 1) un= f(n); 2) y = f(x) определена для " x ³ 1, непрерывна и возрастает, тогда ряд сходится, если сходится несобственный интеграл 1∫+¥f(x)dx, причем если он сходится, то n=1S¥ un = 1∫+¥f(x)dx Знакопеременные ряды, ряды с комплексными числами. Знакочередующиеся ряды – ряды, члены которых имеют чередующие знаки. Теорема Лейбница Если члены знакочередующегося ряда убывают по абсолютной величине и стремяться к нулю, когда n®µ,то 1) ряд сходится; 2) любой остаток ряда не превосходит по абсолютной величине первого из своих членов и имеет одинаковый с ним знак. Доказательство. Пусть дан ряд а1-а2+а3-а4+…+(-1)n-1аn+… и известно, что аn>an+1 для всех n и an®0 при n®µ.Рассмотрим частичную сумму ряда с чётным числом членов S2n= а1-а2+а3-а4+…+a2n-1-a2n= (а1-а2)+(а3-а4)+…+(a2n-1-a2n). В силу первого условия все разности в скобках положительны, поэтому последовательность частичных сумм {S2n} является возрастающей. Докажем, что она является ограниченной. Для этого представим S2n в виде S2n= а1-[(а2-а3)+(а4-а5)+…+(а2т-1-a2n-1)+a2n]. Вы ражение в квадратных скобках положительно, поэтому S2n<a1 для любого n, т.е. последовательность {Sn} ограничена. Итак, последовательность {Sn} возрастающая и ограниченная, следовательно, она имеет предел lim S2n=S. Так как S2n+1=S2n+a2n+1, и по n®µ условию lim a2n+1=0, то lim S2n+1=limS2n=S. n®µ n®µ n®µ Мы доказали, что ряд сходится и его сумма удовлетворяет неравентвам 0<S<a1. Докажем теперь второе утверждение. Рассмотрим остаток ряда а1-а2+а3-а4+…+(-1)n-1аn+… с чётным номером 2k: R2k=a2k+1- a2k+2+… Этот ряд является знакочередующимся и он удовлетворяет всем условиям теоремы, поэтому выполняются оценки 0<R2k<a2k+1. Что касается остатков ряда с нечётными номерами, то любой из них можно записать в виде R2k+1= -a2k+2+a2k+3-…=-(a2k+2-a2k+3+…). Ряд в скобках снова удовлетворяет условиям теоремы, поэтому 0<-R2k+1<a2k+2 или -a2k+2< R2k+1<0. Сходимость ряда вместе с неравенствами 0<S<a1, 0<R2k<a2k+1 и -a2k+2< R2k+1<0 полностью доказывает теорему. Абсолютно сходящиеся ряды и их свойства. Пусть дан знакопеременный ряд. Рассмотрим ряд, составленный из абсолютных величин его членов |a1|+|a2|+…+|an|+… Очевидно, что это ряд с положительными членами. Ряд называется абсолютно сходящимся, если сходится ряд составленный из его членов. Теорема. Всякий абсолютно сходящийся ряд сходится. Сумма такого ряда равна разности между суммой его плюс-ряда и суммой минус-ряда. Доказательство. Пусть ряд а1+а2+…+аn+… сходится абсолютно, т.е. сходится ряд |a1|+|a2|+…+|an|+… Обозначим частичные суммы ряда из модулей его членов через Tn. Имеем Tn= Tn++ Tn- (где Tn+ - некоторая частичная сумма плюс-ряда, Tn- - частичная сумма минус-ряда.) Ввиду сходимоти ряда |a1|+|a2|+…+|an|+…его частичные суммы Tnограничены некоторым числом С. Тогда следует, Tn1+£С и Tn2-£С, т.е. частичные суммы минус- и плюс-ряда также ограничены сверху числом С. Согласно критерию сходимости рядов с положительными членами отсюда вытекает сходимость плюс- и минус-рядов, т.е. существуют пределы T+=lim T+k и T-=lim T-l. Если теперь k®µ l®µ из равенства перейти к пределу при n®µ, то получим limTn=T+-T-, ч.т.д. l®µ Условно сходящиеся ряды. Ряд а1+а2+…+аn+… называется условно сходящимся, если он сходится, а ряд, составленный из модулей его членов, расходится. (теорема Римана. Если ряд сходится условно, то в результате перестаноски его членов можно получить ряд, имеющий любую сумму, а также расходящийся ряд.)
|
||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 256; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.243.211 (0.011 с.) |