Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условия монотонности функции.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Если у=f(x) непрерывна на [a,b] и дифференцируема на этом отрезке, то у=f(x)-const, тогда и только тогда, когда f¢(x)=0 при "х'[a,b]. Следствие у=f(x), y=g(x) непрерывна и диффиренцируема на (a,b) и f¢(x)=g¢(x), то f(x)=g(x)+C. y=f(x) возрастает на Х, если для любых х1,х2'Х, таких что х1<x2Þ f(x1)<f(x2), убывает если x1<x2Þ f(x1)>f(x2). Достаточное условие монотонности. Если функция непрерывна, дифференцируема на (a,b) и внутри (a,b) сохраняет знак, то функция у=f(x) монотонна. Докажем для f¢(x)>0 Þ y=f(x) – возрастает на (a,b) (для убывающей функции доказательство аналогичное) Доказательство. Возьмём точки из отрезка (a,b) х1 и х2, такие что х1<х2. По теореме Лагранжа найдётся тоска с, приналежащая отрезку, для которой f(x2)-f(x1)= f¢(c)(x2-x1). Так как х1<c<x2, то точка с является внутренней точкой промежутка Х. Поэтому f¢(c)³0 и f(x2)³f(x1). Таким образом, мы доказали, что функция f(x) не убывает на промежутке Х. Условия сущ. экстремула Необходимое условие существования экстремума. Для того, чтобы дифференцируемая функция f(x) имела в точке х0 локальный экстремум, необходимо, чтобы в этой точке выполнялось равенство f¢(x0)=0. Доказательство. Поскольку х0 – точка экстремума, то существует такой интервал (х0-e, х0+e), на котором f(x0) – наибольшее или наименьшее значение. Тогда по теореме Ферма f¢(x0)=0. Точки, в которых производная функция обращается в нуль, называются стационарными. Достаточное условие существование экстремума. Если при переходе через точку х0 производная дифференцируемой функции f(x) меняет свой знак с плюса на минус, то точка х0 – точка локального максимума функции f(x), а если с минуса на плюс, то х0 – точка локального минимума. Доказательство. (для максимума, для минимума – аналогично, то бишь самостоятельно) Пусть f(x) – непрерывная дифференцируемая функция. f¢(x) меняет знак с «+» на «-». Пусть для любого хÎ (х0 -D, х0] f¢(x)>0 Þ по достаточному условию монотонности производная возрастает на данном интервале Þ f(x0)³f(x) "CÎ(x0-D, x0] Пусть для "CÎ[х0,х0+D) f¢(x)<0, следовательно, функция убывает на хÎ[х0,х0+D) Þf(x0)³f(x) для любого хÎ[х0,х0+D). Вывод: для любого х Î (х0-D, х0+D) х0 – точка максимума для функции у=f(x). Ч.т.д. Отыскание наибольшего и наименьшего значений функции, заданной на отрезке.
Наибольшее значение достигается в некоторой точке х0Î [a,b]. При этом возможны лишь следущие 3 случая: 1) х0=а, 2) х0=b, 3)х0Î(a,b). Пусть х0Î(a,b). Тогда х0 – точка локального экструмума и, если существует f¢(x0), f¢(x0)=0. Однако производная f¢(x0) может и не существовать. Критической точкой функции f(x) называется точка, в которой производная f¢(x) либо не существует, либо равна нулю. Из определения вытекает, что точка локалького экстремума x0 является критической точкой функции f(x). Предположим, что критические точки функции f(x) на интервале (a; b) образуют конечное множество {x1,x2, …,xn}. Из сказанного выше следует, что точка x0, в которой функция принимает наибольшее (или наименьшее) значение, совпадает с одной из точек: a,b,x1,…xn. Поэтому для максимального значения функции f(x) на отрезке [a,b] имеем равенство fmax=max{f(a),f(b),f(x1),…f(xn)}. Аналогично для минимального значения fmin=min { f(a),f(b),f(x1),…f(xn)}. 1. Область определения функции, поведение функции на границе области определения. Асимптоты. Точки пересечения с осями. (Справка: для нахождения асимптот рассматриваем односторонние пределы (вертикальная асимптота), и пределы при х→∞ для выражений f (x)/х (предел равен к) и f (x)-кх (b) (наклонная асимптота у=кх+b). Подробнее вопр.1.3. 2. Четность, нечетность. Периодичность. (справка: четная f (-x)= f (x); нечетная f (-x)=- f (x). Периодичность f (x+Т)= f (x)= f (x-Т)) 3. Монотонность и экстремумы. (Функции, убывающие или возрастающие на некотором числовом промежутке, называются монотонными. Находим производную, критические точки. промежутки возрастания и убывания, точки максимума и минимума). 4.Выпуклость, вогнутость, точки перегиба. (Для этого находим вторую производную, точки перегиба, распределяем знаки второй производной: -вогнутая, +выпуклая) 5.График функции с обозначением всех найденных точек и асимптот. Теорема Ферма Пусть ф-я у = f(x) определена в некотором промежутке [a;b] и во внутренней точке этого промежутка спринимает наибольшее или наименьшее значение. Если в этой точке существует конечная производная, то она = 0. С ¹ a, с ¹ b, f(c) – max. Докажем, что f'(c) = 0. Т.к. f(c) - max, то для всех точек f(x) £ f(c) при xÎ[a;b] f(x) - f(c) £ 0
Т.к. по условию теоремы в точке с ф-я f имеет производную, то можно рассмотреть производную f'(c) = lim (f(x)-f(c))/(x-c) 1) x-c < 0 f’(c)³ 0ü Þ f’(c) = 0 2) x-c > 0 f’(c)£ 0þ Теорема Ролля Эта теорема позволяет отыскать критические точки, а затем с помощью достаточных условий исследовать ф-ю на экстремумы. Пусть 1) ф-я f(x) определена и непрерывна на некотором замкнутом промежутке [a;b]; 2) существует конечная производная, по крайней мере, в открытом промежутке (a;b); 3) на концах промежутка ф-я принимает равные значения f(a) = f(b). Тогда между точками a и b найдется такая точка с, что производная в этой точке будет = 0. Док-во: По теореме о свойстве ф-ий, непрерывных на отрезке, ф-я f(x) принимает на этом отрезке свое max и min значение. f(x1) = M – max, f(x2) = m – min; x1;x2 Î [a;b] 1) Пусть M = m, т.е. m £ f(x) £ M Þ ф-я f(x) будет принимать на интервале от a до b постоянные значения, а Þ ее производная будет равна нулю. f’(x)=0 2) Пусть M>m Т.к. по условиям теоремы f(a) = f(b) Þ свое наименьшее или наибольшее значение ф-я будет принимать не на концах отрезка, а Þ будет принимать M или m во внутренней точке этого отрезка. Тогда по теореме Ферма f’(c)=0. Теорема Лагранжа Пусть 1) ф-я f(x) определена и непрерывна на интервале [a;b] 2) Существует конечная производная, по крайней мере, в открытом интервале (a;b). Тогда между a и b найдется такая точка с, что для нее выполняется следующее равенство: (f(b)-f(a))/(b-a)=f’(c), a < c< b Док-во: Введем вспомогательную ф-ю F(x). F(x) = f(x) - f(a) - [(f(b)-f(a))/(b-a)]*(x-a) Эта ф-я удовлетворяет всем условиям теоремы Ролля: 1) она непрерывна как разность между непрерывной и линейной функциями; 2) в открытом интервале (a;b) существует конечная производная этой ф-ии. F’(x) = f’(x) - (f(b)-f(a))/(b-a) 3) на концах промежутка в точках a и b эта ф-я равна 0 F(a) = f(a) - f(a) - (f(b)-f(a))/(b-a)*(а - а) = 0 F(b) = f(b) - f(a) - (f(b)-f(a))/(b-a)*(b-a) = 0 Þ производная в какой-либо внутренней точке с равна 0. F’(с) = 0 f’(c) - (f(b)-f(a))/(b-a) = 0, отсюда f’(c) = (f(b)-f(a))/(b-a) Геометрическое истолкование CB/AC = (f(b)-f(a))/(b-a) На дуге АВ найдется по крайней мере одна точка М, в которой касательная || хорде АВ.
|
||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 440; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.119.19.251 (0.01 с.) |