Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Правило сложения вероятностей.Содержание книги
Поиск на нашем сайте
Если событие А и В несовместны, то Р{А + В} = Р{А} + Р{В} Доказательство: Е, Nраз , NА раз наблюдалось событие А, NВ раз наблюдалось событие В, NА+В раз наблюдалось событие А+В. Так как А и В несовместны, то NА+В = NА + NВ, NА+В / N = NА / N+ NВ / N. Если устремить N ® ¥, то получается Р{А + В} = Р{А} + Р{В} Обобщение: Если А1, А2, …, Аn – попарно несовместны, то Р{А1 + А2 + … + Аn } = Р{А1} + Р {А2}+ … + Р {Аn}
Условная вероятность. Правило умножения вероятностей Пусть A и В – два случайных события по отношению к некоторому опыту s, причём р(В) не равно нулю. Число р(АВ)/р(В) называется вероятностью события А при условии, что наступило событие В, или просто условной вероятностью события А. Таким образом рв(А) = р(АВ)/р(В). Пусть N – общее число экспериментов, NB - число экспериментов, в которых имело место событие В. NАВ – Число экспериментов, в которых имели место события А и В одновременно. Отношение NАВ/NB – частота события А при условии, что наступило событие В. р(АВ)=рВ(А)р(В) – Вероятность произведения двух событий равна вероятности одного из этих событий при условии другого, умноженной на вероятность самого условия. Аналогичная формула справедлива для трёх событий. р(А1А2А3)=р(А1)рА1(А2)рА1А2(А3)
А не зависит от В, если выполняется равенство рВ(А)=р(А). Наступление В не оказывает влияния на наступление события А. Правило умножения вероятностей - Если событие А не зависит от В, то справедливо равенство р(АВ)=р(А)р(В). (веростность произведения равна произведению вероятностей) Формула полной вероятности. Формула Байеса Если события Н1, Н2,…,Нn попарно несовместны и образуют полную группу, то для вероятности любого события А справедлива формула р(А)=рН1(А1)р(Н1)+рН2(А)р(Н2)+…+рHn(А)р(Нn). Вероятность события А равна сумме произведений условных вероятностей этого события по каждой из гипотез на вероятность самих гипотез. Формула Байеса. (условие – событие А может наступить только с одной из гипотез). Эта формула определяет вероятность, что имела место именно эта гипотеза. Вывод формулы. p(AHi)=pHi(A)p(Hi) p(HiA)=pA(Hi)p(A) приравниваем правые части, получим pHi(A)p(Hi)=pA(Hi)p(A) воспользуемся формулой полной вероятности. pA(Hi)= рHi(A)p(Hi). рН1(А1)р(Н1)+рН2(А)р(Н2)+…+рHn(А)р(Нn) Дискретная СВ и ее закон распределения. Величина, принимающая в результате испытания (опыта) определенное значение, называется случайной величиной. СВ Х называется дискретной, если существует конечное и счетное множество S={х1, х2,…} такое, что Р(ХÎS)=1. Числа х1, х2,…называются возможными значениями СВ Х. Пусть рi=Р(Х=хi) – вероятность возможного i-го значения. При хi ≠ хj события Х=хi и Х= хj несовместны. Применяя правило сложения вероятностей для несовместных событий получим:
Таблица
называется законом распределения дискретной СВ Х. Для любой СВ функция распределения – F(x)=P(X<x). В случае дискретной СВ функция распределения имеет вид
F(x) – ступенчатая функция со скачками в х1, х2,…, причем величины скачков равны р1, р2,… Числовые хар-ки СДВ. Математическим ожиданием дискретной СВ Х, множество возможных значений которой конечно, называется сумма произведений всех ее возможных значений на их вероятности: М(Х)=х1р1+х2р2+…+хnpn Свойства. 1.Матем. ожидание константы равно константе: М(С)=С 2.Постоянный множитель можно выносить за знак математического ожидания: М(СХ)=СМ(Х) 3.Математическое ожидание суммы СВ равно сумме мат. ожиданий слагаемых: М(Х1+Х2+…+Хn)=M(X1)+M(X2)+…+M(Xn) 4.Математическое ожидание произведений независимых СВ равно произведению математических ожиданий сомножителей. (дискр.СВ наз. независимыми, если Р(Х1=а1,…Хn=an)=P(X1=a1)*…Р(Xn=an). Для любой СВ Х разность Х-М(Х) называется отклонением Х. Математическое ожидание квадрата отклонения СВ Х называется дисперсией Х. По определению D(X)=M(X-M(X))2. Стандартное отклонение СВ Х определяется как корень квадратный из дисперсии и обозначается s(х). Из свойств математического ожидания: D(X)=M(X2)-M(X)2 Свойства. 1.Прибавление (вычитание) константы к СВ не меняет ее дисперсии D(X+C)=D(X) 2.Постоянный множитель выносится из-под знака дисперсии в квадрате D(СX)=С2D(X) 3.Дисперсия суммы независимых СВ равна сумме дисперсий слагаемых D(X1+…+Xn)=D(X1)+…+ D(Xn) Важно помнить, что дисперсия константы равна 0: D(C)=0 Начальным моментом порядка К СВ Х называют математическое ожидание величины Хк: nк=М(Хк) Центральным моментом порядка к случайной величины Х называют математическое ожидание величины (Х-М(Х)) к mк=М[(X-M(X)) к] Cоотношение, связывающее начальные и центральные моменты: m2=n2-n12 При изучении распределений, отличных от нормального, возникает необходимость количественно оценить это различие. С этой целью вводят специальные характеристики – асимметрию и эксцесс (для нормального распределения эти характеристики равны 0). Асимметрией теоретического распределения (теоретическим называют распределение вероятностей) называют отношение центрального момента третьего порядка к кубу среднего квадратического отклонения: Аs=m3\s3 Эксцессом теоретического распределения называют характеристику, которая определяется следующим равенством: Ек=(m4\s4)-3
|
||||||||||||
Последнее изменение этой страницы: 2016-04-21; просмотров: 246; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.154.237 (0.007 с.) |