Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Понятие распределения и гистограммы

Поиск

В статистике под рядом распределения понимают распределе­ние частот по вариантам. Измеренные величины признака в выборке варьируют в пределах от минимального до максимального значения. Этот предел разбивают на так называемые классовые интервалы, которые, в зависимости от конкретных данных, мо­гут быть как равными по величине, так и неравными.


Если по оси абсцисс — ОХ откладывать величины классовых интервалов, а по оси ординат — 0Y величины частот, попадаю­щих в данный классовый интервал, то получается так называе­мая гистограмма распределения частот. При этом над каждым классовым интервалом строится колонка или прямоугольник, площадь которого оказывается пропорциональной соответствую­щей частоте. Гистограмма представляет собой графическое изоб­ражение данного частотного распределения.

 

Первичные описательные статистики.

 

Описательная статистика позволяет обобщать первичные результаты, полученные при наблюдении или в эксперименте. Процедуры здесь сводятся к группировке данных по их значениям, построению распределения их частот, выявлению центральных тенденций распределения (например, средней арифметической) и, наконец, к оценке разброса данных по отношению к найденной центральной тенденции.

К первичным описательным статистикам {Descriptive Statistics) обычно от­носят числовые характеристики распределения измеренного на выборке при­знака. Каждая такая характеристика отражает в одном числовом значении свой­ство распределения множества результатов измерения: с точки зрения их расположения на числовой оси либо с точки зрения их изменчивости. Основ­ное назначение каждой из первичных описательных статистик — замена мно­жества значений признака, измеренного на выборке, одним числом (напри­мер, средним значением как мерой центральной тенденции). Компактное описание группы при помощи первичных статистик позволяет интерпрети­ровать результаты измерений, в частности, путем сравнения первичных статистик разных групп.

МЕРЫ ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ

Мера центральной тенденции (Central Tendency) — ^то число, характеризую­щее выборку по уровню выраженности измеренного признака. ч Существуют три способа определения «центральной тенденции», каждо­му из которых соответствует своя мера: мода, медиана и выборочное среднее.

Мода (Mode) — это такое значение из множества измерений, которое встре­чается наиболее часто. Моде, или модальному интервалу признака, соответ­ствует наибольший подъем (вершина) графика распределения частот. Если график распределения частот имеет одну вершину, то такое распределение Называется унимодальным.

П РИМЕР _____________

Среди 8 значений признака (3, 7, 3, 5, 7, 8, 7, 6) мода Мо = 7 как наиболее часто встречающееся значение. В табл. 3.2 предыдущего параграфа Мо = 3, а в табл. 3.3 модальным является интервал 50-54.

Когда два соседних значения встречаются одинаково часто и чаще, чем любое другое значение, мода есть среднее этих двух значений.

Распределение может иметь и не одну моду. Когда все значения встреча­ются одинаково часто, принято считать, что такое распределение не имеет моды.

Бимодальное распределение имеет на графике распределения две вершины, даже если частоты для двух вершин не строго равны. В последнем случае вы­деляют большую и меньшую моду. Во всей группе может быть и несколько локальных вершин распределения частот. Тогда выделяют наибольшую моду и локальные моды.

Еще раз отметим, что мода — это значение признака, а не его частота.

Медиана (Median) — это такое значение признака, которое делит упорядо­ченное (ранжированное) множество данных пополам так, что одна половина всех значений оказывается меньше медианы, а другая — больше. Таким обра­зом, первым шагом при определении медианы является упорядочивание (ран­жирование) всех значений по возрастанию или убыванию. Далее медиана определяется следующим образом:

· если данные содержат нечетное число значений (8, 9, 10, 13, 15), то ме­диана есть центральное значение, т. е. Md= 10;

· если данные содержат четное число значений (5, 8, 9, 11), то медиана есть точка, лежащая посередине между двумя центральными значения­ми, т. е. Md =(8+9)/2 = 8,5.

Среднее (Mean) (Мх — выборочное среднее, среднее арифметическое) — определяется как сумма всех значений измеренного признаку, деленная на 1 количество суммированных значений.

Если некоторый признак X измерен в группе испытуемых численностью N, мы получим значения: х1, х2,..., xi..., хn (где i — текущий номер испытуе­мого, от 1 до N). Тогда среднее значение Мx определяется по формуле:

(4.1)



Поделиться:


Последнее изменение этой страницы: 2016-06-28; просмотров: 947; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.103.28 (0.006 с.)