Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Понятие распределения и гистограммыСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
В статистике под рядом распределения понимают распределение частот по вариантам. Измеренные величины признака в выборке варьируют в пределах от минимального до максимального значения. Этот предел разбивают на так называемые классовые интервалы, которые, в зависимости от конкретных данных, могут быть как равными по величине, так и неравными. Если по оси абсцисс — ОХ откладывать величины классовых интервалов, а по оси ординат — 0Y величины частот, попадающих в данный классовый интервал, то получается так называемая гистограмма распределения частот. При этом над каждым классовым интервалом строится колонка или прямоугольник, площадь которого оказывается пропорциональной соответствующей частоте. Гистограмма представляет собой графическое изображение данного частотного распределения.
Первичные описательные статистики.
Описательная статистика позволяет обобщать первичные результаты, полученные при наблюдении или в эксперименте. Процедуры здесь сводятся к группировке данных по их значениям, построению распределения их частот, выявлению центральных тенденций распределения (например, средней арифметической) и, наконец, к оценке разброса данных по отношению к найденной центральной тенденции. К первичным описательным статистикам {Descriptive Statistics) обычно относят числовые характеристики распределения измеренного на выборке признака. Каждая такая характеристика отражает в одном числовом значении свойство распределения множества результатов измерения: с точки зрения их расположения на числовой оси либо с точки зрения их изменчивости. Основное назначение каждой из первичных описательных статистик — замена множества значений признака, измеренного на выборке, одним числом (например, средним значением как мерой центральной тенденции). Компактное описание группы при помощи первичных статистик позволяет интерпретировать результаты измерений, в частности, путем сравнения первичных статистик разных групп. МЕРЫ ЦЕНТРАЛЬНОЙ ТЕНДЕНЦИИ Мера центральной тенденции (Central Tendency) — ^то число, характеризующее выборку по уровню выраженности измеренного признака. ч Существуют три способа определения «центральной тенденции», каждому из которых соответствует своя мера: мода, медиана и выборочное среднее. Мода (Mode) — это такое значение из множества измерений, которое встречается наиболее часто. Моде, или модальному интервалу признака, соответствует наибольший подъем (вершина) графика распределения частот. Если график распределения частот имеет одну вершину, то такое распределение Называется унимодальным. П РИМЕР _____________ Среди 8 значений признака (3, 7, 3, 5, 7, 8, 7, 6) мода Мо = 7 как наиболее часто встречающееся значение. В табл. 3.2 предыдущего параграфа Мо = 3, а в табл. 3.3 модальным является интервал 50-54. Когда два соседних значения встречаются одинаково часто и чаще, чем любое другое значение, мода есть среднее этих двух значений. Распределение может иметь и не одну моду. Когда все значения встречаются одинаково часто, принято считать, что такое распределение не имеет моды. Бимодальное распределение имеет на графике распределения две вершины, даже если частоты для двух вершин не строго равны. В последнем случае выделяют большую и меньшую моду. Во всей группе может быть и несколько локальных вершин распределения частот. Тогда выделяют наибольшую моду и локальные моды. Еще раз отметим, что мода — это значение признака, а не его частота. Медиана (Median) — это такое значение признака, которое делит упорядоченное (ранжированное) множество данных пополам так, что одна половина всех значений оказывается меньше медианы, а другая — больше. Таким образом, первым шагом при определении медианы является упорядочивание (ранжирование) всех значений по возрастанию или убыванию. Далее медиана определяется следующим образом: · если данные содержат нечетное число значений (8, 9, 10, 13, 15), то медиана есть центральное значение, т. е. Md= 10; · если данные содержат четное число значений (5, 8, 9, 11), то медиана есть точка, лежащая посередине между двумя центральными значениями, т. е. Md =(8+9)/2 = 8,5. Среднее (Mean) (Мх — выборочное среднее, среднее арифметическое) — определяется как сумма всех значений измеренного признаку, деленная на 1 количество суммированных значений. Если некоторый признак X измерен в группе испытуемых численностью N, мы получим значения: х1, х2,..., xi..., хn (где i — текущий номер испытуемого, от 1 до N). Тогда среднее значение Мx определяется по формуле: (4.1)
|
|||||
Последнее изменение этой страницы: 2016-06-28; просмотров: 947; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.103.28 (0.006 с.) |