Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Кровообращение и лимфоток в легкихСодержание книги
Поиск на нашем сайте
В легкие кровь поступает из легочных (малый круг кровообращения) и бронхиальных артерий (большой круг кровообращения). Бронхиальные арте- рии отходят от грудной аорты и кровоснабжают трахеобронхиальное дерево до уровня дыхательных бронхиол. Дистальнее метаболизм легочной ткани обеспечивается одновременно альвеолярным газом и кровью из сосудов малого (легочного) круга кровообращения. Легочное кровообращение начинается от легочной артерии, в которую поступает из правого желудочка деоксигенированная кровь. Легочная артерия делится на правую и левую ветви, соответственно каждому легкому. Деоксигенированная кровь проходит через легочные капилляры, поглощая кислород pi отдавая углекислый газ. Насыщенная кислородом кровь затем возвращается в левое предсердие по четырем главным легочным венам (по две от каждого легкого). Хотя через большой и малый круги кровообращения в единицу времени протекает один и тот же объем крови, из-за более низкого легочного сосудистого сопротивления давление в легочной артерии в 6 раз ниже системного артериального давления. Стенки легочных артерий и вен тоньше и имеют менее выраженный гладкомышечный слой, чем сосуды большого круга. Бронхиальное и легочное русла сообщаются между собой. Прямые артериовенозные шунты, идущие в обход легочных капилляров, обычно не имеют функционального значения, но их роль становится ощутимой при некоторых патологических состояниях (гл. 26 и 35). Вклад бронхиального кровотока в венозную примесь у здоровых людей обсуждается ниже. Легочные капилляры Легочные капилляры проходят в стенках альвеол. Средний диаметр капилляра (10 мкм) практически соответствует диаметру эритроцита. Каждый сегмент капиллярной сети снабжает не одну альвеолу, поэтому кровь омывает несколько альвеол, прежде чем достигнет легочной вены. Из-за относительно низкого давления в малом круге крово-ток через отдельный сегмент зависит от силы тяжести и от размера альвеол. Крупные альвеолы Рис. 22-2. Легочное интерстициальное пространство с капилляром, проходящим между двумя альвеолами. Капилляр выпячивается в просвет расположенной справа альвеолы через ее тонкую (газообменную) стенку. Интерстициальное пространство сливается с толстой стенкой левой альвеолы. (С разрешения. Из: Nunn J. F. Applied Respiratory Physiology, 3rd ed. Butterworths, 1987.) имеют меньшее суммарное сечение прилегающих капилляров и, соответственно, большее сопротивление току крови. В вертикальном положении тела кровоток в капиллярах верхушек легких меньше, чем кровоток в капиллярах базальных отделов. Клетки эндотелия легочных капилляров прилегают друг к другу сравнительно неплотно. Межклеточные промежутки в 5 мкм пропускают крупные молекулы, такие как альбумин. В результате легочное интерстициальное пространство содержит много альбумина. Циркулирующие макрофаги и нейтрофилы относительно легко проходят между клетками эндотелия и более плотно прилегающими друг к другу клетками альвеолярного эпителия. В интерстициальном пространстве и внутри альвеол обычно присутствуют легочные макрофаги: они противодействуют развитию бактериальной инфекции и удаляют инородные частицы. Лимфатические сосуды легких Лимфатические протоки легких начинаются в интерстициальном пространстве крупных легочных перегородок. Из-за неплотности межклеточных соединений эндотелия лимфа имеет высокое содержание белка; скорость тока лимфы в норме превышает 20 мл/мин. Крупные лимфатические сосуды идут вверх, сопровождая дыхательные пути и образуя трахеобронхиальную цепочку лимфатических узлов. Лимфатические дренажные протоки из обоих легких сообщаются между собой на пути вдоль трахеи. Лимфа из левого легкого оттекает главным образом в грудной проток, из правого легкого — в правый лимфатический проток. ИННЕРВАЦИЯ Диафрагма иннервируется диафрагмальными нервами, берущими начало в нервных корешках сегментов C3-C5. Односторонний блок или паралич диафрагмалъного нерва лишь не значительно уменьшает показатели нормальной легочной вентиляции (приблизительно на 25 %). Хотя двусторонний паралич диафрагмальных нервов приводит к более серьезным нарушениям, в некоторых случаях вспомогательные дыхательные мышцы могут обеспечивать адекватную вентиляцию. Межреберные мышцы иннервируются из грудных спинномозговых нервов. Повреждение шейного отдела спинного мозга выше уровня C5 вызывает полную утрату самостоятельного дыхания в связи с тем, что оказываются выключенными как диафрагмальные, так и межреберные мышцы. Блуждающие нервы обеспечивают чувствительную иннервацию трахеобронхиального дерева. Существует и симпатическая, и парасимпатическая иннервация гладкой мускулатуры бронхов и бронхиальных желез. Активация блуждающего нерва приводит к бронхоконстрикции и усиливает бронхиальную секрецию через м-холинорецеп-торы. Активация симпатических (T1-T4) волокон через (32-адренорецепторы вызывает бронходила-тацию и ослабление секреции. Стимуляция Q1-ад-ренорецепторов уменьшает секрецию желез, но чревата бронхоконстрикцей. Кроме того, существует неадренергическая, нехолинергическая система бронходилатации; ее медиатором предположительно является вазоактивный интестиналь-ный пептид. Иннервация гортани рассмотрена в гл. 5. В сосудах легких имеются и а-, и (3-адреноре-цепторы, но симпатическая система в норме не оказывает значительного влияния на легочный сосудистый тонус. Стимуляция Qi-адренорецепто-ров вызывает вазоконстрикцию, |32-адреноре-цепторов — вазодилатацию. Вазодилатация, обусловленная парасимпатической активностью, реализуется через оксид азота (NO). Основные механизмы дыхания Постоянно происходящий обмен между альвеолярным газом и свежим воздухом из верхних дыхательных путей обеспечивает оксигенацию венозной крови и удаление из нее углекислого газа. Этот обмен осуществляется благодаря небольшим по величине циклически меняющимся градиентам давления в дыхательных путях. При самостоятельном дыхании градиенты давления возникают вслед за изменением внутригрудного давления; во время ИВЛ их наличие обеспечивает перемежающееся положительное давление в верхних дыхательных путях. Самостоятельное дыхание Изменения давления во время самостоятельного дыхания показаны на рис. 22-3. Если альвеолы находятся в расправленном (неспавшемся) состоянии, то давление внутри них всегда выше, чем окружающее (внутригрудное) давление. В конце вдоха и в конце выдоха альвеолярное давление (РА) в норме равно атмосферному (принимается за ноль в рассматриваемой ситуации). В физиологии дыхания внутриплевральное давление (РВц) принимают за эквивалент внутригрудного давления. Хотя, может быть, не совсем корректно говорить о давлении в потенциальном пространстве (т. е. в плевральной полости), этот подход позволяет определить транспульмональное давление. Транспульмональное давление (РТц) определяется следующим образом: P = P — P 'транспульмональное 'альвеолярное ' внутриплевральное- В конце выдоха внутриплевральное давление в норме составляет -5 см вод. ст., соответственно транспульмональное давление равно +5 см вод. ст. Сокращение диафрагмы и межреберных мышц во время вдоха вызывает увеличение объема грудной клетки и уменьшение внутриплеврального давления до -7,5 см вод. ст. В результате альвеолярное давление снижается (от О до -1— -2 см вод. ст.), и возникает градиент давления между альвеолами и верхними дыхательными путями; газ поступает из верхних дыхательных путей в альвеолы. В конце вдоха (когда движение газа прекращается) альвео- Рис. 22-3. Изменения внутриплеврального и альвеолярного давления во время дыхания. Заметим, что при максимальном дыхательном объеме поток отсутствует, а альвеолярное давление равно атмосферному. (С изменениями. Из: West J. В. Respiratory Physiology, 3rd ed. Williams & Wilkins, 1985.) лярное давление возвращается к нулю, но внутри-плевральное давление остается пониженным; транспульмональное давление (в эту фазу цикла оно составляет +7,5 см вод. ст.) поддерживает легкие в растянутом состоянии. Во время выдоха расслабление диафрагмы возвращает внутриплевральное давление к уровню -5 см вод. ст. Теперь транспульмональное давление не поддерживает повышенный объем легких и силы эластической тяги легких вызывают изменение градиента давлений между альвеолами и верхними дыхательными путями на противоположный: газ выходит из альвеол, и восстанавливается первоначальный объем легких.
|
||||
Последнее изменение этой страницы: 2016-04-20; просмотров: 387; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.62.69 (0.007 с.) |