Содержание книги

  1. Тепловые процессы, классификация, движущая сила. Виды переноса тепла. Способы интенсификации процессов.
  2. Перенос тепла за счет теплопроводности. Закон фурье. Конвективный теплообмен. Закон ньютона.
  3. Тепло- и хладоносители, используемые в пищевой промышленности. Требования предъявляемые к ним, их характеристика. Определение расхода.
  4. Теплообменные аппараты емкостного типа. Устройство,методика инженерного расчета.
  5. Теплообменный аппарат типа «труба в трубе». Устройство, методика инженерного расчета.
  6. Теплообменник змеевикового типа. Устройство, методика инженерного расчета.
  7. Кожухотрубные теплообменные аппараты. Устройство, методика инженерного расчета.
  8. Пластинчатые и спиральные теплообменники. Устройство, методика инженерного расчета.
  9. Назначение и способы ведения процесса выпаривания. Сравнительная оценка эффективности. Удельный расход греющего пара
  10. Однокорпусная вакуум – выпарная установка. Схема, принцип работы. Уравнения материального и теплового балансов.
  11. Простое выпаривание с компрессированием сокового пара. Расчет расхода греющего пара. Термокомпрессор. Устройство, принцип действия, расчет коэффициента инжекции.
  12. Движущая сила процесса выпаривания. Температурные потери в процессе выпаривания. Расчет полезной разности температур.
  13. Выпарной аппарат с естественной (принудительной) циркуляцией. Устройство, принцип действия.
  14. Многокорпусное выпаривание. Сравнительная оценка схем многокорпусных выпарных установок, выбор оптимального числа корпусов установки.
  15. Перенос массы в твердых телах (диффузия).
  16. Молекулярная диффузия. Первый закон фика. Дифференциальное уравнение конвективной диффузии. Второй закон фика.
  17. Линия равновесия. Материальный баланс процессов массопередачи. Уравнение рабочей линии.
  18. Материальный баланс и рабочая линия процесса
  19. Понятия кристаллизации и растворения. Статика и кинетика процессов. Растворимость. Степень пересыщения. Способы кристаллизации.
  20. Материальный и тепловой балансы кристаллизации. Аппаратурное оформление процесса.
  21. Материальный и тепловой баланс кристаллизации
  22. Область применения и механизм процесса экстракции. Способы ведения процесса. Аппаратурное оформление.
  23. Аппаратурное оформление процесса экстракции жидкость-жидкость.
  24. Сущность и область применения процесса адсорбции. Виды адсорбентов. Активность адсорбента. Способы десорбции.
  25. комбинированием указанных способов.
  26. Перегонка. Основные понятия. Способы перегонки
  27. Материальный баланс простой перегонки
  28. FхF = WхW + (F – W)( хр)ср. ,гдехр = (FхF – WхW)/(F – W).
  29. Материальный и тепловой балансы ректификационной установки
  30. Тепловой баланс ректификационной колонны
  31. Виды связи влаги с материалом. Критическая и равновесная влажность. Явление термовлагопроводности. Кривые сушки и скорости сушки.
  32. Материальный и тепловой балансы процесса конвективной сушки. Понятие удельного расхода воздуха.
  33. Основные параметры влажного воздуха.
  34. Здесь и далее теплоёмкости рассматриваются применительно к 1 кг сухой части воздуха и поэтому являются удельными величинами.


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Линия равновесия. Материальный баланс процессов массопередачи. Уравнение рабочей линии.



18 Линия равновесия. Материальный баланс процессов массопередачи. Уравнение рабочей линии.

Материальный баланс. Рабочие концентрации распределяемого вещества не равны равновесным, и в действующих аппаратах никогда не достигают равновесных значений.

Зависимость между рабочими концентрациями распределяемого вещества в фазах изображается линией, которая носит название рабочей линии процесса. Вид функции или уравнение рабочей линии в его общем виде, является одинаковым для всех массообменных процессов и получается из их материальных балансов.

Уравнение рабочих линий

Поскольку условия работы укрепляющей и исчерпывающей частей ректификационной колонны различны, то рассмотрим материальные балансы для них отдельно.

Для укрепляющей части колонны возьмем произвольное сечение Л—Л (см. рис. 5.30), которому соответствуют текущие концентрации х и у, и составим материальный баланс по НК для верха этой части колонны:

откуда

где L — количество флегмы, стекающей в верхней части колонны, причем

Количество поднимающихся по колонне паров

Так как по принятому допущению^ = хр, то уравнение (5.50) при подстановке в него соответствующих значений L и G принимает вид

откуда получаем уравнение рабочей линии укрепляющей части колонны

При х = хр у = хр, т.е. рабочая линия укрепляющей части колонны пересекает диагональ с абсциссой хр (второе допущение).

Обозначим , а . Тогда уравнение (5.53) примет

вид соотношения у = Ах + В, которое является уравнением прямой линии. В нем А — тангенс угла наклона рабочей линии к оси абсцисс, а В — отрезок, отсекаемый рабочей линией на оси ординат.

 

 

 

Абсорбцией называют процесс поглощения газа жидким поглотителем, в котором газ растворим в той или иной степени. Обратный процесс - выделение растворенного газа из раствора - носит название десорбции.

В абсорбционных процессах (абсорбция, десорбция) участвуют две фазы - жидкая и газовая, и происходит переход вещества из газовой фазы в жидкую (при абсорбции) или, наоборот, из жидкой фазы в газовую (при десорбции). Таким образом, абсорбционные процессы являются одним из видов процессов массопередачи.



Поделиться:


Последнее изменение этой страницы: 2024-06-27; просмотров: 3; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.141.192.183 (0.007 с.)